Bsgamma Class Reference

A class for the \(b \to s \gamma\) decay. More...

#include <bsgamma.h>

Inheritance diagram for Bsgamma:
[legend]
Collaboration diagram for Bsgamma:
[legend]

Detailed Description

A class for the \(b \to s \gamma\) decay.

Author
HEPfit Collaboration

This class is used to compute all the functions needed in order to compute the observables relative to the \(b \to s \gamma\) decay, following the prescriptions of [108] and [107]. After the Wilson coefficients are computed in computeCoeff() and the cache is checked in checkCache(), the parameters are updated in updateParameters(), in which part of the parameters are taken from the fit in [9] and used to compute the ratio \(C = | \frac{V_{ub}}{V_{cb}} |^2 \frac{\Gamma[\bar{B} \to X_c e \bar{\nu}]} {\Gamma[\bar{B} \to X_u e \bar{\nu}]} \) in C_sem().

The perturbative part of the Branching Ratio is computed order by order:

  • at Leading Order it is computed in P0(), in which are taken into account both the leading term due to \(C_7\) [109] and the subleading term due to the 4-body contribution, computed in P0_4body() [94] ;

The \(V_{ub}\) corrections at LO are automatically taken into account in P0_4body() [94], while at NLO are computed in the function Vub_NLO() [81], [92] , which considers contributions from 2-body, 3-body and 4-body decays, with the former switched off due to setting the marco FOUR_BODY to false.

All the perturbative corrections are eventually added in the function P(). The non-perturbative corrections are computed in the function N(), which follows the prescription of [41]. The observables are finally computed in the computeThValue() function.

Definition at line 61 of file Flavour/src/bsgamma.h.

Public Member Functions

gslpp::complex a (double z)
 The funcion \( a(z) \) as defined in [46] . More...
 
gslpp::complex b (double z)
 The funcion \( b(z) \) as defined in [46] . More...
 
 Bsgamma (const StandardModel &SM_i, int obsFlag)
 Constructor. More...
 
double C_sem ()
 The ratio \(C = | \frac{V_{ub}}{V_{cb}} |^2 \frac{\Gamma[\bar{B} \to X_c e \bar{\nu}]}{\Gamma[\bar{B} \to X_u e \bar{\nu}]} \) as defined in [82] , but with coefficients slightly modified due to different imput parameters (obtained by private conversation with Paolo Gambino). More...
 
void computeCoeff (double mu)
 Compute the Wilson Coefficient. More...
 
double computeThValue ()
 Computes the Branching Ratio for the \(b \to s \gamma\) decay. More...
 
double delta (double E0)
 The cutoff energy function \( \delta = 1 - \frac{2 E_0}{M_b^{\rm kin}} \). More...
 
double ff7_dMP (double E0)
 The 4-body NLO correction due to \(Q_7\) and d, \(ff^7_{d,MP}\), from [92] . More...
 
double ff7_sMP (double E0)
 The 4-body NLO correction due to \(Q_7\) and s, \(ff^7_{s,MP}\), from [92] . More...
 
double ff8_dMP (double E0)
 The 4-body NLO correction due to \(Q_8\) and d, \(ff^8_{d,MP}\), from [92] . More...
 
double ff8_sMP (double E0)
 The 4-body NLO correction due to \(Q_8\) and s, \(ff^8_{s,MP}\), from [92] . More...
 
gslpp::complex Gamma_t (double t)
 The function \( \Gamma \) as defined in [81] . More...
 
double getKb_abs2_1mt (double t)
 The function \(|k_b(t)|^2(1 - t)\). More...
 
double getKb_abs2_1mt2 (double t)
 The function \(|k_b(t)|^2(1 - t)^2\). More...
 
double getKb_abs2_t2_1mt (double t)
 The function \(|k_b(t)|^2t^2(1 - t)\). More...
 
double getKb_abs2_t2_1mt2 (double t)
 The function \(|k_b(t)|^2t^2(1 - t)^2\). More...
 
double getKb_abs2_t_1mt (double t)
 The function \(|k_b(t)|^2t(1 - t)\). More...
 
double getKb_abs2_t_1mt2 (double t)
 The function \(|k_b(t)|^2t(1 - t)^2\). More...
 
double getKb_re_1mt (double t)
 The function \(Re(k_b(t))(1-t)\). More...
 
double getKb_re_1mt2 (double t)
 The function \(Re(k_b(t))(1-t)^2\). More...
 
double getKb_re_t (double t)
 The function \(Re(k_b(t))t\). More...
 
double getKb_re_t2_1mt (double t)
 The function \(Re(k_b(t))t^2(1-t)\). More...
 
double getKb_re_t2_1mt2 (double t)
 The function \(Re(k_b(t))t^2(1-t)^2\). More...
 
double getKb_re_t_1mt (double t)
 The function \(Re(k_b(t))t(1-t)\). More...
 
double getKb_re_t_1mt2 (double t)
 The function \(Re(k_b(t))t(1-t)^2\). More...
 
double getKc_abs2_1mt (double t)
 The function \(|k_c(t)|^2(1 - t)\). More...
 
double getKc_abs2_1mt2 (double t)
 The function \(t|k_c(t)|^2(1 - t)^2\). More...
 
double getKc_abs2_t (double t)
 The function \(|k_c(t)|^2 t\). More...
 
double getKc_abs2_t_1mt (double t)
 The function \(|k_c(t)|^2t(1 - t)\). More...
 
double getKc_im_1mt (double t)
 The function \(Im(k_c(t))(1-t)\). More...
 
double getKc_im_1mt2 (double t)
 The function \(Im(k_c(t))(1-t)^2\). More...
 
double getKc_re_1mt (double t)
 The function \(Re(k_c(t))(1-t)\). More...
 
double getKc_re_1mt2 (double t)
 The function \(Re(k_c(t))(1-t)^2\). More...
 
double getKc_re_Kb_1mt (double t)
 The function \(Re(k_b(t))Re(k_c(t))(1-t)\). More...
 
double getKc_re_Kb_1mt2 (double t)
 The function \(Re(k_b(t))Re(k_c(t))(1-t)^2\). More...
 
double getKc_re_Kb_t_1mt (double t)
 The function \(Re(k_b(t))Re(k_c(t)t(1-t)\). More...
 
double getKc_re_Kb_t_1mt2 (double t)
 The function \(Re(k_b(t))Re(k_c(t)t(1-t)^2\). More...
 
double getKc_re_t (double t)
 The function \(Re(k_c(t))t\). More...
 
double getKc_re_t_1mt (double t)
 The function \(Re(k_c(t))t(1-t)\). More...
 
double getKc_re_t_1mt2 (double t)
 The function \(Re(k_c(t))t(1-t)^2\). More...
 
double Int_b1 (double E0)
 Integral of the functions getKb_re_1mt() and getKb_re_1mt2(). More...
 
double Int_b2 (double E0)
 Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2(). More...
 
double Int_b3 (double E0)
 Integral of the functions getKb_re_t() and getKb_re_t_1mt(). More...
 
double Int_b4 (double E0)
 Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2(). More...
 
double Int_bb1 (double E0)
 Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2(). More...
 
double Int_bb2 (double E0)
 Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2(). More...
 
double Int_bb4 (double E0)
 Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2(). More...
 
double Int_bc1 (double E0)
 Integral of the functions getKc_re_Kb_1mt() and getKc_re_Kb_1mt2(). More...
 
double Int_bc2 (double E0)
 Integral of the functions getKc_re_Kb_t_1mt() and getKc_re_Kb_t_1mt2(). More...
 
double Int_c1 (double E0)
 Integral of the functions getKc_re_1mt() and getKc_re_1mt2(). More...
 
double Int_c1_im (double E0)
 Integral of the functions getKc_im_1mt() and getKc_im_1mt2(). More...
 
double Int_c2 (double E0)
 Integral of the functions getKc_re_t_1mt() and getKc_re_t_1mt2(). More...
 
double Int_c3 (double E0)
 Integral of the functions getKc_re_t() and getKc_re_t_1mt(). More...
 
double Int_cc (double E0)
 Integral of the functions getKc_abs2_t() and getKc_abs2_t_1mt(). More...
 
double Int_cc1 (double E0)
 Integral of the functions getKc_abs2_1mt() and getKc_abs2_1mt^(). More...
 
double Int_cc1_part1 (double E0)
 Integral of the functions getKc_abs2_1mt(). More...
 
gslpp::complex kappa (double Mq, double t)
 The function \( k \) as defined in [113] . More...
 
double Kij_1 (int i, int j, double E0, double mu)
 The \( K_{ij}^{(1)} \) function from [109] . More...
 
double N (double E0, double mu)
 The non perturbative part of the \(BR\) as defined in [41] , \(N\). More...
 
double N_27 ()
 The non perturbative part of the \(BR\) due to \(Q_2-Q_7\) interference as defined in [81] , \(N_{27}\). More...
 
double N_77 (double E0, double mu)
 The non perturbative part of the \(BR\) due to \(Q_7-Q_7\) interference as defined in [73] , \(N_{77}\). More...
 
double omega (double E0)
 The cutoff energy function \( \omega \) as defined in [94] . More...
 
double P (double E0, double mu_b, double mu_c, orders order, bool CPodd)
 The perturbative part of the \(BR\) as defined in [109] , \(P\). More...
 
double P0 (double E0)
 The perturbative part \( P^{(0)} \) of the BR as defined in [109] . More...
 
double P0_4body (double E0, double t)
 The 4-body LO contribution as defined in [94] . More...
 
double P11 ()
 The perturbative part \( P_1^{(1)} \) of the BR as defined in [109] . More...
 
double P12 ()
 The perturbative part \( P_1^{(2)} \) of the BR as defined in [109] . More...
 
double P21 (double E0, double mu)
 The perturbative part \( P_2^{(1)} \) of the BR as defined in [109] . More...
 
double P22 (double E0, double mu_b, double mu_c)
 The perturbative part \( P_2^{(2)} \) of the BR as defined in [109] . More...
 
double P32 (double E0, double mu)
 The perturbative part \( P_3^{(2)} \) of the BR as defined in [109] . More...
 
double Phi11_1 (double E0)
 The \( \Phi_{11}^{(1)} \) function from [81] . More...
 
double Phi12_1 (double E0)
 The \( \Phi_{12}^{(1)} \) function from [81] . More...
 
double Phi13_1 (double E0)
 The \( \Phi_{13}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi14_1 (double E0)
 The \( \Phi_{14}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi15_1 (double E0)
 The \( \Phi_{15}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi16_1 (double E0)
 The \( \Phi_{16}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi17_1 (double E0, double z)
 The \( \Phi_{17}^{(1)} \) function from [81] . More...
 
double Phi18_1 (double E0, double z)
 The \( \Phi_{18}^{(1)} \) function from [81] . More...
 
double Phi22_1 (double E0)
 The \( \Phi_{22}^{(1)} \) function from [81] . More...
 
double Phi23_1 (double E0)
 The \( \Phi_{23}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi23_1_4body (double E0)
 The \( \Phi_{23}^{(1),{\rm 4-body}} \) function obtained from [92] . More...
 
double Phi24_1 (double E0)
 The \( \Phi_{24}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi24_1_4body (double E0)
 The \( \Phi_{24}^{(1),{\rm 4-body}} \) function obtained from [92] . More...
 
double Phi25_1 (double E0)
 The \( \Phi_{25}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi25_1_4body (double E0)
 The \( \Phi_{25}^{(1),{\rm 4-body}} \) function obtained from [92] . More...
 
double Phi26_1 (double E0)
 The \( \Phi_{26}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi26_1_4body (double E0)
 The \( \Phi_{26}^{(1),{\rm 4-body}} \) function obtained from [92] . More...
 
double Phi27_1 (double E0, double z)
 The \( \Re \Phi_{27}^{(1)} \) function from [81] . More...
 
double Phi27_1_im (double E0, double z)
 The \( \Im\Phi_{27}^{(1)} \) function from [81] . More...
 
double Phi28_1 (double E0, double z)
 The \( \Phi_{28}^{(1)} \) function from [81] . More...
 
double Phi33_1 (double E0)
 The \( \Phi_{33}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi34_1 (double E0)
 The \( \Phi_{34}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi35_1 (double E0)
 The \( \Phi_{35}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi36_1 (double E0)
 The \( \Phi_{36}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi37_1 (double E0)
 The \( \Phi_{37}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi38_1 (double E0)
 The \( \Phi_{38}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi44_1 (double E0)
 The \( \Phi_{44}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi45_1 (double E0)
 The \( \Phi_{45}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi46_1 (double E0)
 The \( \Phi_{46}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi47_1 (double E0)
 The \( \Phi_{47}^{(1)} \) function from [81] and adding the 4-body contribution from [92] . More...
 
double Phi48_1 (double E0)
 The \( \Phi_{48}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi55_1 (double E0)
 The \( \Phi_{55}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi56_1 (double E0)
 The \( \Phi_{56}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi57_1 (double E0)
 The \( \Phi_{57}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi58_1 (double E0)
 The \( \Phi_{58}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi66_1 (double E0)
 The \( \Phi_{66}^{(1)} \) function obtained using the prescription of [50] . More...
 
double Phi67_1 (double E0)
 The \( \Phi_{67}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi68_1 (double E0)
 The \( \Phi_{68}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] . More...
 
double Phi77_1 (double E0)
 The \( \Phi_{77}^{(1)} \) function from [81] . More...
 
double Phi78_1 (double E0)
 The \( \Phi_{78}^{(1)} \) function from [81] . More...
 
double Phi88_1 (double E0)
 The \( \Phi_{88}^{(1)} \) function from [81] . More...
 
gslpp::complex r1 (int i, double z)
 The funcion \( r_i^{(1)}(z) \) as defined in [46] . More...
 
double rho (double E0)
 The cutoff energy function \( \rho \) as defined in [94] . More...
 
double T1 (double E0, double t)
 The cutoff energy function \( T_1 \) as defined in [94] . More...
 
double T2 (double E0, double t)
 The cutoff energy function \( T_2 \) as defined in [94] . More...
 
double T3 (double E0, double t)
 The cutoff energy function \( T_3 \) as defined in [94] . More...
 
void updateParameters ()
 The update parameter method for bsgamma. More...
 
double Vub_NLO (double E0, bool CPodd)
 The total NLO Vub part of the \(BR\), \(Vub^{NLO}\). More...
 
double Vub_NLO_2body (bool CPodd)
 The 2 body NLO Vub part of the \(BR\) as defined in [81] , \(Vub^{NLO}_{2b}\). More...
 
double Vub_NLO_3body (double E0, bool CPodd)
 The 3 body NLO Vub part of the \(BR\), \(Vub^{NLO}_{3b}\). More...
 
double Vub_NLO_4body (double E0, bool CPodd)
 The 4 body NLO Vub part of the \(BR\) obtained from [92] , \(Vub^{NLO}_{4b}\). More...
 
double zeta ()
 The squared ratio between \(m_c\) and \(m_b^{\rm kin}\), \( z \). More...
 
- Public Member Functions inherited from ThObservable
double getBinMax ()
 A get method to get the maximum value of the bin. More...
 
double getBinMin ()
 A get method to get the minimum value of the bin. More...
 
const StandardModelgetModel ()
 A get method to get the model. More...
 
void setBinMax (double max)
 A set method to set the maximum value of the bin. More...
 
void setBinMin (double min)
 A set method to set the minimum value of the bin. More...
 
 ThObservable (const StandardModel &SM_i)
 Constructor. More...
 
 ThObservable (const ThObservable &orig)
 The copy constructor. More...
 
virtual ~ThObservable ()
 The default destructor. More...
 

Private Member Functions

void checkCache ()
 The caching method for bsgamma. More...
 

Private Attributes

double ale
 
gslpp::vector< gslpp::complex > ** allcoeff
 
gslpp::vector< gslpp::complex > ** allcoeffprime
 
double Alstilde
 
double alsUps
 
double avaINT
 
double BLNPcorr
 
double BR
 
double BR_CPodd
 
double BRsl
 
double C
 
gslpp::complex C1_0
 
gslpp::complex C1_1
 
gslpp::complex C2_0
 
gslpp::complex C2_1
 
gslpp::complex C3_0
 
gslpp::complex C3_1
 
gslpp::complex C4_0
 
gslpp::complex C4_1
 
gslpp::complex C5_0
 
gslpp::complex C5_1
 
gslpp::complex C6_0
 
gslpp::complex C6_1
 
gslpp::complex C7_0
 
gslpp::complex C7_1
 
gslpp::complex C7_2
 
gslpp::complex C7p_0
 
gslpp::complex C7p_1
 
gslpp::complex C8_0
 
gslpp::complex C8_1
 
double CacheIntb1
 
double CacheIntb2
 
double CacheIntb3
 
double CacheIntb4
 
double CacheIntbb1
 
double CacheIntbb2
 
double CacheIntbb4
 
double CacheIntbc1
 
double CacheIntbc2
 
double CacheIntc1
 
double CacheIntc1im
 
double CacheIntc2
 
double CacheIntc3
 
double CacheIntcc
 
double CacheIntcc1
 
double CacheIntcc1p1
 
double CacheIntPhi772r
 
gslpp::complex CKMu
 
double E0
 
double errINT
 
gsl_function INT
 
unsigned int Intb1Cached
 
unsigned int Intb2Cached
 
unsigned int Intb3Cached
 
unsigned int Intb4Cached
 
double Intb_cache
 
unsigned int Intb_updated
 
unsigned int Intbb1Cached
 
unsigned int Intbb2Cached
 
unsigned int Intbb4Cached
 
unsigned int Intbc1Cached
 
unsigned int Intbc2Cached
 
gslpp::vector< double > Intbc_cache
 
unsigned int Intbc_updated
 
unsigned int Intc1Cached
 
unsigned int Intc1imCached
 
unsigned int Intc2Cached
 
unsigned int Intc3Cached
 
unsigned int Intcc1Cached
 
unsigned int Intcc1p1Cached
 
unsigned int IntccCached
 
unsigned int IntPhi772rCached
 
gslpp::complex lambda_t
 
double Mb_kin
 
double Mc
 
double Ms
 
double mu_b
 
double mu_c
 
double mu_G2
 
double mu_kin
 
double mu_pi2
 
int obs
 
double overall
 
double rho_D3
 
double rho_LS3
 
gslpp::complex V_cb
 
gsl_integration_cquad_workspace * w_INT
 

Additional Inherited Members

- Protected Attributes inherited from ThObservable
double max
 the bin maximum. More...
 
double min
 The bin minimum. More...
 
const StandardModelSM
 A reference to an object of StandardMode class. More...
 

Constructor & Destructor Documentation

Bsgamma::Bsgamma ( const StandardModel SM_i,
int  obsFlag 
)

Constructor.

Parameters
[in]SM_ia reference to an object of type StandardModel
[in]obsFlagflag to choose which observable to compute

Definition at line 16 of file Flavour/src/bsgamma.cpp.

17 : ThObservable(SM_i),
18 Intbc_cache(2, 0.)
19 {
20  if (SM.ModelName().compare("StandardModel") != 0 && SM.ModelName().compare("FlavourWilsonCoefficient") != 0) std::cout << "\nWARNING: b to s gamma not implemented in: " + SM.ModelName() + " model, returning Standard Model value.\n" << std::endl;
21 
22  if (obsFlag > 0 and obsFlag < 3) obs = obsFlag;
23  else throw std::runtime_error("obsFlag in bsgamma can only be 1 (BR) or 2 (BR_CPodd)");
24 
25  Intb1Cached = 0;
26  Intb2Cached = 0;
27  Intb3Cached = 0;
28  Intb4Cached = 0;
29  Intbb1Cached = 0;
30  Intbb2Cached = 0;
31  Intbb4Cached = 0;
32  Intbc1Cached = 0;
33  Intbc2Cached = 0;
34  Intc1Cached = 0;
35  Intc2Cached = 0;
36  Intc3Cached = 0;
37  Intcc1Cached = 0;
38 
39  w_INT = gsl_integration_cquad_workspace_alloc (100);
40 }
gslpp::vector< double > Intbc_cache
unsigned int Intbb4Cached
unsigned int Intbc1Cached
unsigned int Intc2Cached
gsl_integration_cquad_workspace * w_INT
unsigned int Intc3Cached
unsigned int Intb3Cached
unsigned int Intb4Cached
unsigned int Intbc2Cached
unsigned int Intbb2Cached
const StandardModel & SM
A reference to an object of StandardMode class.
Definition: ThObservable.h:99
unsigned int Intc1Cached
ThObservable(const StandardModel &SM_i)
Constructor.
Definition: ThObservable.h:29
unsigned int Intbb1Cached
unsigned int Intb2Cached
unsigned int Intcc1Cached
unsigned int Intb1Cached
std::string ModelName() const
A method to fetch the name of the model.
Definition: Model.h:56

Member Function Documentation

gslpp::complex Bsgamma::a ( double  z)

The funcion \( a(z) \) as defined in [46] .

Parameters
[in]zsquared ratio between \(m_c\) and \(m_b^{\rm kin}\)
Returns
\( a(z) \)

Definition at line 153 of file Flavour/src/bsgamma.cpp.

154 {
155  double zeta3 = gsl_sf_zeta_int(3);
156 
157  double z2=z*z;
158  double z3=z2*z;
159  double z4=z3*z;
160  double z5=z4*z;
161  double z6=z5*z;
162 
163  double L=log(z);
164  double L2=L*L;
165  double L3=L2*L;
166 
167  double pi2=M_PI*M_PI;
168 
169  if (z == 1.) return 4.0859 + 4./9. * M_PI * gslpp::complex::i();
170  else return 16./9. * ( ( 5./2. - pi2/3. - 3.*zeta3
171  + ( 5./2. - 3./4.*pi2 )*L + L2/4. + L3/12. )*z
172  + ( 7./4. + 2./3.*pi2 - pi2*L/2. - L2/4. + L3/12. )*z2
173  + ( -7./6. - pi2/4. + 2*L - 3./4.*L2 )*z3
174  + ( 457./216. - 5./18*pi2 - L/72. - 5./6.*L2 )*z4
175  + ( 35101./8640. - 35./72.*pi2 - 185./144.*L - 35./24.*L2 )*z5
176  + ( 67801./8000. - 21./20.*pi2 - 3303./800.*L - 63./20.*L2 )*z6 +
177  gslpp::complex::i()*M_PI*( ( 2. - pi2/6. + L/2. + L2/2. )*z
178  + ( 1./2. - pi2/6. - L + L2/2. )*z2
179  + z3 + 5./9.*z4 + 49./72.*z5 + 231./200.*z6) );
180 }
static const complex & i()
complex log(const complex &z)
gslpp::complex Bsgamma::b ( double  z)

The funcion \( b(z) \) as defined in [46] .

Parameters
[in]zsquared ratio between \(m_c\) and \(m_b^{\rm kin}\)
Returns
\( b(z) \)

Definition at line 182 of file Flavour/src/bsgamma.cpp.

183 {
184  double z2=z*z;
185  double z3=z2*z;
186  double z4=z3*z;
187  double z5=z4*z;
188  double z6=z5*z;
189 
190  double L=log(z);
191  double L2=L*L;
192 
193  double pi2=M_PI*M_PI;
194 
195  if (z == 1.) return 0.0316 + 4./81. * M_PI * gslpp::complex::i();
196  else return -8./9. * ( ( -3. + pi2/6. - L )*z - 2./3.*pi2*pow(z,3./2.)
197  + ( 1./2. + pi2 -2.*L - L2/2. )*z2
198  + ( -25./12. - pi2/9. - 19./18.*L + 2.*L2 )*z3
199  + ( -1376./225. + 137./30.*L + 2.*L2 + 2./3.*pi2 )*z4
200  + ( -131317./11760. + 887./84.*L + 5.*L2 + 5./3.*pi2 )*z5
201  + ( -2807617./97200. + 16597./540.*L + 14.*L2 + 14./3.*pi2 )*z6 +
202  gslpp::complex::i()*M_PI*( -z + ( 1 - 2.*L )*z2
203  + ( -10./9. + 4./3.*L )*z3 + z4 + 2./3.*z5 + 7./9.*z6) );
204 }
complex pow(const complex &z1, const complex &z2)
static const complex & i()
complex log(const complex &z)
double Bsgamma::C_sem ( )

The ratio \(C = | \frac{V_{ub}}{V_{cb}} |^2 \frac{\Gamma[\bar{B} \to X_c e \bar{\nu}]}{\Gamma[\bar{B} \to X_u e \bar{\nu}]} \) as defined in [82] , but with coefficients slightly modified due to different imput parameters (obtained by private conversation with Paolo Gambino).

Returns
\(C\)

Definition at line 1221 of file Flavour/src/bsgamma.cpp.

1222 {
1223  double z=zeta();
1224  return (1. - 8. * z + 8. * z*z*z - z*z*z*z - 12. * z*z * log(z)) * ( 0.903
1225  - 0.588 * (SM.Alstilde5(4.6)*4*M_PI - 0.22) + 0.0650 * (Mb_kin - 4.55)
1226  - 0.1080 * (Mc - 1.05) - 0.0122 * mu_G2 - 0.199 * rho_D3 + 0.004 * rho_LS3);
1227 }
double zeta()
The squared ratio between and , .
const StandardModel & SM
A reference to an object of StandardMode class.
Definition: ThObservable.h:99
complex log(const complex &z)
void Bsgamma::checkCache ( )
private

The caching method for bsgamma.

Definition at line 42 of file Flavour/src/bsgamma.cpp.

43 {
44  if (Mb_kin == Intb_cache)
45  Intb_updated = 1;
46  else {
48  Intb_updated = 0;
49  }
50 
51  if (Mb_kin == Intbc_cache(0) && Mc == Intbc_cache(1))
52  Intbc_updated = 1;
53  else {
54  Intbc_cache(0) = Mb_kin;
55  Intbc_cache(1) = Mc;
56  Intbc_updated = 0;
57  }
58 }
gslpp::vector< double > Intbc_cache
unsigned int Intbc_updated
unsigned int Intb_updated
void Bsgamma::computeCoeff ( double  mu)

Compute the Wilson Coefficient.

Parameters
[in]mulow scale of the decay

Definition at line 1028 of file Flavour/src/bsgamma.cpp.

1029 {
1032 
1033  C1_0 = (*(allcoeff[LO]))(0);
1034  C2_0 = (*(allcoeff[LO]))(1);
1035  C3_0 = (*(allcoeff[LO]))(2);
1036  C4_0 = (*(allcoeff[LO]))(3);
1037  C5_0 = (*(allcoeff[LO]))(4);
1038  C6_0 = (*(allcoeff[LO]))(5);
1039  C7_0 = (*(allcoeff[LO]))(6);
1040  C8_0 = (*(allcoeff[LO]))(7);
1041 
1042  C1_1 = (*(allcoeff[NLO]))(0)/Alstilde;
1043  C2_1 = (*(allcoeff[NLO]))(1)/Alstilde;
1044  C3_1 = (*(allcoeff[NLO]))(2)/Alstilde;
1045  C4_1 = (*(allcoeff[NLO]))(3)/Alstilde;
1046  C5_1 = (*(allcoeff[NLO]))(4)/Alstilde;
1047  C6_1 = (*(allcoeff[NLO]))(5)/Alstilde;
1048  C7_1 = (*(allcoeff[NLO]))(6)/Alstilde;
1049  C8_1 = (*(allcoeff[NLO]))(7)/Alstilde;
1050 
1051  C7p_0 = (*(allcoeffprime[LO]))(6);
1052  C7p_1 = (*(allcoeffprime[NLO]))(6)/Alstilde;
1053 
1054 }
gslpp::complex C1_0
gslpp::complex C4_1
gslpp::complex C6_1
gslpp::vector< gslpp::complex > ** allcoeff
gslpp::complex C1_1
gslpp::complex C2_1
gslpp::vector< gslpp::complex > ** ComputeCoeffprimesgamma(double mu, schemes scheme=NDR)
Computes the chirality flipped Wilson coefficient for the process .
Definition: Flavour.h:165
gslpp::vector< gslpp::complex > ** allcoeffprime
gslpp::complex C8_1
gslpp::complex C6_0
gslpp::complex C5_1
gslpp::complex C5_0
gslpp::complex C7_0
gslpp::complex C2_0
gslpp::complex C3_0
Definition: OrderScheme.h:33
gslpp::complex C7_1
Flavour * getMyFlavour() const
gslpp::vector< gslpp::complex > ** ComputeCoeffsgamma(double mu, schemes scheme=NDR)
Computes the Wilson coefficient for the process .
Definition: Flavour.h:154
const StandardModel & SM
A reference to an object of StandardMode class.
Definition: ThObservable.h:99
gslpp::complex C8_0
gslpp::complex C7p_1
gslpp::complex C4_0
gslpp::complex C3_1
gslpp::complex C7p_0
double Bsgamma::computeThValue ( )
virtual

Computes the Branching Ratio for the \(b \to s \gamma\) decay.

Returns
\(BR\)

Implements ThObservable.

Definition at line 1282 of file Flavour/src/bsgamma.cpp.

1283 {
1284  updateParameters();
1285 
1286  if (obs == 1)
1287  return overall * ( P(E0, mu_b, mu_c, NLO, false) + N(E0,mu_b) );
1288  if (obs == 2)
1289  return overall * ( P(E0, mu_b, mu_c, NLO, true) + N(E0,mu_b) );
1290 
1291  throw std::runtime_error("Bsgamma::computeThValue(): Observable type not defined. Can be only 1 or 2");
1292 }
void updateParameters()
The update parameter method for bsgamma.
double N(double E0, double mu)
The non perturbative part of the as defined in , .
double P(double E0, double mu_b, double mu_c, orders order, bool CPodd)
The perturbative part of the as defined in , .
double Bsgamma::delta ( double  E0)

The cutoff energy function \( \delta = 1 - \frac{2 E_0}{M_b^{\rm kin}} \).

Parameters
[in]E0cutoff energy
Returns
\( \delta(E0) \)

Definition at line 60 of file Flavour/src/bsgamma.cpp.

61 {
62  return 1. - 2.*E0/Mb_kin;
63 }
double Bsgamma::ff7_dMP ( double  E0)

The 4-body NLO correction due to \(Q_7\) and d, \(ff^7_{d,MP}\), from [92] .

Parameters
[in]E0energy cutoff
Returns
\(ff^7_{d,MP}\)

Definition at line 562 of file Flavour/src/bsgamma.cpp.

563 {
564  if (FOUR_BODY){
565  double d=delta(E0);
566  double d2=d*d;
567  double d3=d2*d;
568 
569  return 4. * d * (18. - 33.*d + 2.*d2 + 13.*d3 - 6.* d2 * (2. + d) * log(d))
570  / (81. * (d - 1.));
571  }
572  else
573  return 0.;
574 }
#define FOUR_BODY
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
double Bsgamma::ff7_sMP ( double  E0)

The 4-body NLO correction due to \(Q_7\) and s, \(ff^7_{s,MP}\), from [92] .

Parameters
[in]E0energy cutoff
Returns
\(ff^7_{s,MP}\)

Definition at line 576 of file Flavour/src/bsgamma.cpp.

577 {
578  if (FOUR_BODY){
579  double d=delta(E0);
580  double d2=d*d;
581  double d3=d2*d;
582 
583  return (-2. * d * (72. + 39.*d - 76.*d2 - 35.*d3
584  + 6.*d*(18. + 13.*d + 2.*d2)*log(d))) / (243.*(d - 1.));
585  }
586  else
587  return 0.;
588 }
#define FOUR_BODY
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
double Bsgamma::ff8_dMP ( double  E0)

The 4-body NLO correction due to \(Q_8\) and d, \(ff^8_{d,MP}\), from [92] .

Parameters
[in]E0energy cutoff
Returns
\(ff^8_{d,MP}\)

Definition at line 590 of file Flavour/src/bsgamma.cpp.

591 {
592  if (FOUR_BODY){
593  double d=delta(E0);
594  double d2=d*d;
595  double d3=d2*d;
596  double ld = log(d);
597  double l1d = log(1. - d);
598  double Li2 = gsl_sf_dilog(d);
599 
600  return -136./27. * d - 724./81. * d2 + 20./27. * d3
601  + (-8./9. + 16./9. * d - 8./9. * d2) * l1d* l1d
602  + (32./27. * d + 76./27. * d2 - 16./81. * d3) * ld
603  + (-104./27. - 80./9. * d + 40./9. * d2 + (32./27.
604  + 32./9. * d - 16./9. * d2) * ld) * l1d
605  + (-64./27. * d - 152./27. * d2 + 32./81. * d3
606  + (-64./27. - 64./9. * d + 32./9. * d2) * l1d) * log(Ms/Mb_kin)
607  + (32./27. + 32./9. * d - 16./9. * d2) * Li2;
608  }
609  else
610  return 0.;
611 }
#define FOUR_BODY
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
double Bsgamma::ff8_sMP ( double  E0)

The 4-body NLO correction due to \(Q_8\) and s, \(ff^8_{s,MP}\), from [92] .

Parameters
[in]E0energy cutoff
Returns
\(ff^8_{s,MP}\)

Definition at line 613 of file Flavour/src/bsgamma.cpp.

614 {
615  if (FOUR_BODY){
616  double d=delta(E0);
617  double d2=d*d;
618  double d3=d2*d;
619  double ld = log(d);
620  double l1d = log(1. - d);
621  double Li2 = gsl_sf_dilog(d);
622 
623  return -340./243. * d - 104./81. * d2 + 16./729. * d3
624  + (-4./27. + 8./27. * d - 4./27. * d2) * l1d* l1d
625  + (8./27. * d + 4./9. * d2) * ld
626  + (-16./27. * d - 8./9. * d2) * log(Ms/Mb_kin)
627  + (-268./243. - 40./27. * d + 20./27. * d2 + (8./27.
628  + 16./27. * d - 8./27. * d2) * ld
629  + (-16./27. - 32./27. * d + 16./27. * d2) * log(Ms/Mb_kin)) * l1d
630  + (8./27. + 16./27. * d - 8./27. * d2) * Li2;
631  }
632  else
633  return 0.;
634 }
#define FOUR_BODY
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
gslpp::complex Bsgamma::Gamma_t ( double  t)

The function \( \Gamma \) as defined in [81] .

Parameters
[in]tdummy variable to be integrated out
Returns
\( \Gamma \)

Definition at line 233 of file Flavour/src/bsgamma.cpp.

234 {
235  if (t<4) return -2. * atan( sqrt(t/(4.-t)) ) * atan( sqrt(t/(4.-t)) );
236  else return -M_PI*M_PI/2. + 2.*log( ( sqrt(t) + sqrt(t-4.) ) / 2. )*log( ( sqrt(t) + sqrt(t-4.) ) / 2. )
237  - 2.*gslpp::complex::i()*M_PI*log( ( sqrt(t) + sqrt(t-4.) ) / 2. );
238 }
static const complex & i()
complex log(const complex &z)
complex sqrt(const complex &z)
double Bsgamma::getKb_abs2_1mt ( double  t)
inline

The function \(|k_b(t)|^2(1 - t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_b(t)|^2(1 - t)\)

Definition at line 306 of file Flavour/src/bsgamma.h.

307  {
308  return kappa(Mb_kin,t).abs2() * (1. - t);
309  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_abs2_1mt2 ( double  t)
inline

The function \(|k_b(t)|^2(1 - t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_b(t)|^2(1 - t)^2\)

Definition at line 317 of file Flavour/src/bsgamma.h.

318  {
319  return kappa(Mb_kin,t).abs2() * (1. - t) * (1. - t);
320  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_abs2_t2_1mt ( double  t)
inline

The function \(|k_b(t)|^2t^2(1 - t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_b(t)|^2t^2(1 - t)\)

Definition at line 350 of file Flavour/src/bsgamma.h.

351  {
352  return kappa(Mb_kin,t).abs2() * t * t * (1. - t);
353  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_abs2_t2_1mt2 ( double  t)
inline

The function \(|k_b(t)|^2t^2(1 - t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_b(t)|^2t^2(1 - t)^2\)

Definition at line 361 of file Flavour/src/bsgamma.h.

362  {
363  return kappa(Mb_kin,t).abs2() * t * t * (1. - t) * (1. - t);
364  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_abs2_t_1mt ( double  t)
inline

The function \(|k_b(t)|^2t(1 - t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_b(t)|^2t(1 - t)\)

Definition at line 328 of file Flavour/src/bsgamma.h.

329  {
330  return kappa(Mb_kin,t).abs2() * t * (1. - t);
331  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_abs2_t_1mt2 ( double  t)
inline

The function \(|k_b(t)|^2t(1 - t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_b(t)|^2t(1 - t)^2\)

Definition at line 339 of file Flavour/src/bsgamma.h.

340  {
341  return kappa(Mb_kin,t).abs2() * t * (1. - t) * (1. - t);
342  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_re_1mt ( double  t)
inline

The function \(Re(k_b(t))(1-t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))(1-t)\)

Definition at line 427 of file Flavour/src/bsgamma.h.

428  {
429  return kappa(Mb_kin,t).real() * (1. - t);
430  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_re_1mt2 ( double  t)
inline

The function \(Re(k_b(t))(1-t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))(1-t)^2\)

Definition at line 438 of file Flavour/src/bsgamma.h.

439  {
440  return kappa(Mb_kin,t).real() * (1. - t) * (1. - t);
441  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_re_t ( double  t)
inline

The function \(Re(k_b(t))t\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))t\)

Definition at line 372 of file Flavour/src/bsgamma.h.

373  {
374  return kappa(Mb_kin,t).real() * t ;
375  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_re_t2_1mt ( double  t)
inline

The function \(Re(k_b(t))t^2(1-t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))t^2(1-t)\)

Definition at line 394 of file Flavour/src/bsgamma.h.

395  {
396  return kappa(Mb_kin,t).real() * t * t * (1. - t);
397  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_re_t2_1mt2 ( double  t)
inline

The function \(Re(k_b(t))t^2(1-t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))t^2(1-t)^2\)

Definition at line 405 of file Flavour/src/bsgamma.h.

406  {
407  return kappa(Mb_kin,t).real() * t * t * (1. - t) * (1. - t);
408  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_re_t_1mt ( double  t)
inline

The function \(Re(k_b(t))t(1-t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))t(1-t)\)

Definition at line 383 of file Flavour/src/bsgamma.h.

384  {
385  return kappa(Mb_kin,t).real() * t * (1. - t);
386  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKb_re_t_1mt2 ( double  t)
inline

The function \(Re(k_b(t))t(1-t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))t(1-t)^2\)

Definition at line 416 of file Flavour/src/bsgamma.h.

417  {
418  return kappa(Mb_kin,t).real() * t * (1. - t) * (1. - t);
419  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_abs2_1mt ( double  t)
inline

The function \(|k_c(t)|^2(1 - t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_c(t)|^2(1 - t)\)

Definition at line 196 of file Flavour/src/bsgamma.h.

197  {
198  return kappa(Mc,t).abs2() * (1. - t);
199  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_abs2_1mt2 ( double  t)
inline

The function \(t|k_c(t)|^2(1 - t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_c(t)|^2(1 - t)^2\)

Definition at line 218 of file Flavour/src/bsgamma.h.

219  {
220  return kappa(Mc,t).abs2() * (1. - t) * (1. - t);
221  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_abs2_t ( double  t)
inline

The function \(|k_c(t)|^2 t\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_c(t)|^2t\)

Definition at line 185 of file Flavour/src/bsgamma.h.

186  {
187  return kappa(Mc,t).abs2() * t;
188  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_abs2_t_1mt ( double  t)
inline

The function \(|k_c(t)|^2t(1 - t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(|k_c(t)|^2t(1 - t)\)

Definition at line 207 of file Flavour/src/bsgamma.h.

208  {
209  return kappa(Mc,t).abs2() * t * (1. - t);
210  };
double abs2() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_im_1mt ( double  t)
inline

The function \(Im(k_c(t))(1-t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Im(k_c(t))(1-t)\)

Definition at line 273 of file Flavour/src/bsgamma.h.

274  {
275  return kappa(Mc,t).imag() * (1. - t);
276  };
gslpp::complex kappa(double Mq, double t)
The function as defined in .
const double & imag() const
double Bsgamma::getKc_im_1mt2 ( double  t)
inline

The function \(Im(k_c(t))(1-t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Im(k_c(t))(1-t)^2\)

Definition at line 295 of file Flavour/src/bsgamma.h.

296  {
297  return kappa(Mc,t).imag() * (1. - t) * (1. - t);
298  };
gslpp::complex kappa(double Mq, double t)
The function as defined in .
const double & imag() const
double Bsgamma::getKc_re_1mt ( double  t)
inline

The function \(Re(k_c(t))(1-t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_c(t))(1-t)\)

Definition at line 262 of file Flavour/src/bsgamma.h.

263  {
264  return kappa(Mc,t).real() * (1. - t);
265  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_re_1mt2 ( double  t)
inline

The function \(Re(k_c(t))(1-t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_c(t))(1-t)^2\)

Definition at line 284 of file Flavour/src/bsgamma.h.

285  {
286  return kappa(Mc,t).real() * (1. - t) * (1. - t);
287  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_re_Kb_1mt ( double  t)
inline

The function \(Re(k_b(t))Re(k_c(t))(1-t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))Re(k_c(t))(1-t)\)

Definition at line 449 of file Flavour/src/bsgamma.h.

450  {
451  return kappa(Mc,t).real() * kappa(Mb_kin,t).real() * (1. - t);
452  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_re_Kb_1mt2 ( double  t)
inline

The function \(Re(k_b(t))Re(k_c(t))(1-t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))Re(k_c(t))(1-t)^2\)

Definition at line 460 of file Flavour/src/bsgamma.h.

461  {
462  return kappa(Mc,t).real() * kappa(Mb_kin,t).real() * (1. - t) * (1. - t);
463  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_re_Kb_t_1mt ( double  t)
inline

The function \(Re(k_b(t))Re(k_c(t)t(1-t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))Re(k_c(t)t(1-t)\)

Definition at line 471 of file Flavour/src/bsgamma.h.

472  {
473  return kappa(Mc,t).real() * kappa(Mb_kin,t).real() * t * (1. - t);
474  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_re_Kb_t_1mt2 ( double  t)
inline

The function \(Re(k_b(t))Re(k_c(t)t(1-t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_b(t))Re(k_c(t)t(1-t)^2\)

Definition at line 482 of file Flavour/src/bsgamma.h.

483  {
484  return kappa(Mc,t).real() * kappa(Mb_kin,t).real() * t * (1. - t) * (1. - t);
485  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_re_t ( double  t)
inline

The function \(Re(k_c(t))t\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_c(t))t\)

Definition at line 229 of file Flavour/src/bsgamma.h.

230  {
231  return kappa(Mc,t).real() * t ;
232  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_re_t_1mt ( double  t)
inline

The function \(Re(k_c(t))t(1-t)\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_c(t))t(1-t)\)

Definition at line 240 of file Flavour/src/bsgamma.h.

241  {
242  return kappa(Mc,t).real() * t * (1. - t);
243  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::getKc_re_t_1mt2 ( double  t)
inline

The function \(Re(k_c(t))t(1-t)^2\).

Parameters
[in]tdummy variable to be integrated out
Returns
\(Re(k_c(t))t(1-t)^2\)

Definition at line 251 of file Flavour/src/bsgamma.h.

252  {
253  return kappa(Mc,t).real() * t * (1. - t) * (1. - t);
254  };
const double & real() const
gslpp::complex kappa(double Mq, double t)
The function as defined in .
double Bsgamma::Int_b1 ( double  E0)

Integral of the functions getKb_re_1mt() and getKb_re_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_b(t))(1-t) + \int_{1-\delta(E_0)}^1 Re(k_b(t))(1-t)^2\)

Definition at line 247 of file Flavour/src/bsgamma.cpp.

248 {
249  if (Intb1Cached == 0) {
250  double t1 = (1. - delta(E0));
251 
252  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_re_1mt, &(*this), _1));
253  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
254  double mt = avaINT;
255 
256  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_re_1mt2, &(*this), _1));
257  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
258  double mt2 = avaINT;
259 
260  CacheIntb1 = delta(E0)*mt + mt2;
261  Intb1Cached = 1;
262  }
263 
264  return CacheIntb1;
265 }
double getKb_re_1mt(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double getKb_re_1mt2(double t)
The function .
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intb1Cached
double Bsgamma::Int_b2 ( double  E0)

Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_b(t))t(1-t) + \int_{1-\delta(E_0)}^1 Re(k_b(t))t(1-t)^2\)

Definition at line 267 of file Flavour/src/bsgamma.cpp.

268 {
269  if (Intb2Cached == 0) {
270  double t1 = (1. - delta(E0));
271 
272  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_re_t_1mt, &(*this), _1));
273  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
274  double mt = avaINT;
275 
276  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_re_t_1mt2, &(*this), _1));
277  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
278  double mt2 = avaINT;
279 
280  CacheIntb2 = delta(E0)*mt + mt2;
281  Intb2Cached = 1;
282  }
283 
284  return CacheIntb2;
285 }
double getKb_re_t_1mt(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
double getKb_re_t_1mt2(double t)
The function .
unsigned int Intb2Cached
double Bsgamma::Int_b3 ( double  E0)

Integral of the functions getKb_re_t() and getKb_re_t_1mt().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_b(t))t + \int_{1-\delta(E_0)}^1 Re(k_b(t))t(1-t)\)

Definition at line 287 of file Flavour/src/bsgamma.cpp.

288 {
289  if (Intb3Cached == 0) {
290  double t1 = (1. - delta(E0));
291 
292  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_re_t, &(*this), _1));
293  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
294  double t = avaINT;
295 
296  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_re_t_1mt, &(*this), _1));
297  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
298  double mt = avaINT;
299 
300  CacheIntb3 = delta(E0)*t + mt;
301  Intb3Cached = 1;
302  }
303 
304  return CacheIntb3;
305 }
double getKb_re_t(double t)
The function .
double getKb_re_t_1mt(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intb3Cached
double Bsgamma::Int_b4 ( double  E0)

Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_b(t))t^2(1-t) + \int_{1-\delta(E_0)}^1 Re(k_b(t))t^2(1-t)^2\)

Definition at line 307 of file Flavour/src/bsgamma.cpp.

308 {
309  if (Intb4Cached == 0) {
310  double t1 = (1. - delta(E0));
311 
312  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_re_t2_1mt, &(*this), _1));
313  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
314  double mt = avaINT;
315 
316  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_re_t2_1mt2, &(*this), _1));
317  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
318  double mt2 = avaINT;
319 
320  CacheIntb4 = delta(E0)*mt + mt2;
321  Intb4Cached = 1;
322  }
323 
324  return CacheIntb4;
325 }
double getKb_re_t2_1mt2(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intb4Cached
double getKb_re_t2_1mt(double t)
The function .
double Bsgamma::Int_bb1 ( double  E0)

Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} |(k_b(t)|^2(1-t) + \int_{1-\delta(E_0)}^1 |(k_b(t)|^2(1-t)^2\)

Definition at line 327 of file Flavour/src/bsgamma.cpp.

328 {
329  if (Intbb1Cached == 0) {
330  double t1 = (1. - delta(E0));
331 
332  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_abs2_1mt, &(*this), _1));
333  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
334  double mt = avaINT;
335 
336  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_abs2_1mt2, &(*this), _1));
337  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
338  double mt2 = avaINT;
339 
340  CacheIntbb1 = delta(E0)*mt + mt2;
341  Intbb1Cached = 1;
342  }
343 
344  return CacheIntbb1;
345 }
double getKb_abs2_1mt(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double getKb_abs2_1mt2(double t)
The function .
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intbb1Cached
double Bsgamma::Int_bb2 ( double  E0)

Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} |(k_b(t)|^2t(1-t) + \int_{1-\delta(E_0)}^1 |(k_b(t)|^2t(1-t)^2\)

Definition at line 347 of file Flavour/src/bsgamma.cpp.

348 {
349  if (Intbb2Cached == 0) {
350  double t1 = (1. - delta(E0));
351 
352  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_abs2_t_1mt, &(*this), _1));
353  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
354  double mt = avaINT;
355 
356  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_abs2_t_1mt2, &(*this), _1));
357  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
358  double mt2 = avaINT;
359 
360  CacheIntbb2 = delta(E0)*mt + mt2;
361  Intbb2Cached = 1;
362  }
363 
364  return CacheIntbb2;
365 }
double getKb_abs2_t_1mt2(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intbb2Cached
double getKb_abs2_t_1mt(double t)
The function .
double Bsgamma::Int_bb4 ( double  E0)

Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} |(k_b(t)|^2t^2(1-t) + \int_{1-\delta(E_0)}^1 |(k_b(t)|^2t^2(1-t)^2\)

Definition at line 367 of file Flavour/src/bsgamma.cpp.

368 {
369  if (Intbb4Cached == 0) {
370  double t1 = (1. - delta(E0));
371 
372  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_abs2_t2_1mt, &(*this), _1));
373  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
374  double mt = avaINT;
375 
376  INT = convertToGslFunction(boost::bind(&Bsgamma::getKb_abs2_t2_1mt2, &(*this), _1));
377  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
378  double mt2 = avaINT;
379 
380  CacheIntbb4 = delta(E0)*mt + mt2;
381  Intbb4Cached = 1;
382  }
383 
384  return CacheIntbb4;
385 }
unsigned int Intbb4Cached
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double getKb_abs2_t2_1mt(double t)
The function .
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
double getKb_abs2_t2_1mt2(double t)
The function .
double Bsgamma::Int_bc1 ( double  E0)

Integral of the functions getKc_re_Kb_1mt() and getKc_re_Kb_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_b(t))Re(k_c(t))(1-t) + \int_{1-\delta(E_0)}^1 Re(k_b(t))Re(k_c(t))(1-t)^2\)

Definition at line 387 of file Flavour/src/bsgamma.cpp.

388 {
389  if (Intbc1Cached == 0) {
390  double t1 = (1. - delta(E0));
391 
392  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_Kb_1mt, &(*this), _1));
393  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
394  double mt = avaINT;
395 
396  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_Kb_1mt2, &(*this), _1));
397  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
398  double mt2 = avaINT;
399 
400  CacheIntbc1 = delta(E0)*mt + mt2;
401  Intbc1Cached = 1;
402  }
403 
404  return CacheIntbc1;
405 }
double getKc_re_Kb_1mt(double t)
The function .
unsigned int Intbc1Cached
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
double getKc_re_Kb_1mt2(double t)
The function .
double Bsgamma::Int_bc2 ( double  E0)

Integral of the functions getKc_re_Kb_t_1mt() and getKc_re_Kb_t_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_b(t))Re(k_c(t))t(1-t) + \int_{1-\delta(E_0)}^1 Re(k_b(t))Re(k_c(t))t(1-t)^2\)

Definition at line 407 of file Flavour/src/bsgamma.cpp.

408 {
409  if (Intbc2Cached == 0) {
410  double t1 = (1. - delta(E0));
411 
412  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_Kb_t_1mt, &(*this), _1));
413  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
414  double mt = avaINT;
415 
416  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_Kb_t_1mt2, &(*this), _1));
417  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
418  double mt2 = avaINT;
419 
420  CacheIntbc2 = delta(E0)*mt + mt2;
421  Intbc2Cached = 1;
422  }
423 
424  return CacheIntbc2;
425 }
double getKc_re_Kb_t_1mt(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intbc2Cached
double getKc_re_Kb_t_1mt2(double t)
The function .
double Bsgamma::Int_c1 ( double  E0)

Integral of the functions getKc_re_1mt() and getKc_re_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_c(t))(1-t) + \int_{1-\delta(E_0)}^1 Re(k_c(t))(1-t)^2\)

Definition at line 427 of file Flavour/src/bsgamma.cpp.

428 {
429  if (Intc1Cached == 0) {
430  double t1 = (1. - delta(E0));
431 
432  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_1mt, &(*this), _1));
433  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
434  double mt = avaINT;
435 
436  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_1mt2, &(*this), _1));
437  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
438  double mt2 = avaINT;
439 
440  CacheIntc1 = delta(E0)*mt + mt2;
441  Intc1Cached = 1;
442  }
443 
444  return CacheIntc1;
445 }
double getKc_re_1mt(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intc1Cached
double getKc_re_1mt2(double t)
The function .
double Bsgamma::Int_c1_im ( double  E0)

Integral of the functions getKc_im_1mt() and getKc_im_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Im(k_c(t))(1-t) + \int_{1-\delta(E_0)}^1 Im(k_c(t))(1-t)^2\)

Definition at line 447 of file Flavour/src/bsgamma.cpp.

448 {
449  if (Intc1imCached == 0) {
450  double t1 = (1. - delta(E0));
451 
452  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_im_1mt, &(*this), _1));
453  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
454  double mt = avaINT;
455 
456  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_im_1mt2, &(*this), _1));
457  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
458  double mt2 = avaINT;
459 
460  CacheIntc1im = delta(E0)*mt + mt2;
461  Intc1imCached = 1;
462  }
463 
464  return CacheIntc1im;
465 }
double getKc_im_1mt2(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intc1imCached
double getKc_im_1mt(double t)
The function .
double Bsgamma::Int_c2 ( double  E0)

Integral of the functions getKc_re_t_1mt() and getKc_re_t_1mt2().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_c(t))t(1-t) + \int_{1-\delta(E_0)}^1 Re(k_c(t))t(1-t)^2\)

Definition at line 467 of file Flavour/src/bsgamma.cpp.

468 {
469  if (Intc2Cached == 0) {
470  double t1 = (1. - delta(E0));
471 
472  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_t_1mt, &(*this), _1));
473  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
474  double mt = avaINT;
475 
476  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_t_1mt2, &(*this), _1));
477  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
478  double mt2 = avaINT;
479 
480  CacheIntc2 = delta(E0)*mt + mt2;
481  Intc2Cached = 1;
482  }
483 
484  return CacheIntc2;
485 }
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
unsigned int Intc2Cached
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
double getKc_re_t_1mt2(double t)
The function .
double getKc_re_t_1mt(double t)
The function .
double Bsgamma::Int_c3 ( double  E0)

Integral of the functions getKc_re_t() and getKc_re_t_1mt().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} Re(k_c(t))t + \int_{1-\delta(E_0)}^1 Re(k_c(t))t(1-t)\)

Definition at line 487 of file Flavour/src/bsgamma.cpp.

488 {
489  if (Intc3Cached == 0) {
490  double t1 = (1. - delta(E0));
491 
492  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_t, &(*this), _1));
493  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
494  double t = avaINT;
495 
496  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_re_t_1mt, &(*this), _1));
497  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
498  double mt = avaINT;
499 
500  CacheIntc3 = delta(E0)*t + mt;
501  Intc3Cached = 1;
502  }
503 
504  return CacheIntc3;
505 }
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
unsigned int Intc3Cached
double getKc_re_t(double t)
The function .
double getKc_re_t_1mt(double t)
The function .
double Bsgamma::Int_cc ( double  E0)

Integral of the functions getKc_abs2_t() and getKc_abs2_t_1mt().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} |k_c(t)|^2t + 2\int_{1-\delta(E_0)}^1 |k_c(t)|^2t(1-t)\)

Definition at line 507 of file Flavour/src/bsgamma.cpp.

508 {
509  if (IntccCached == 0) {
510  double t1 = (1. - delta(E0));
511 
512  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_abs2_t, &(*this), _1));
513  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
514  double mt = avaINT;
515 
516  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_abs2_t_1mt, &(*this), _1));
517  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
518  double mt2 = avaINT;
519 
520  CacheIntcc = delta(E0)*mt + 2. * mt2;
521  IntccCached = 1;
522  }
523 
524  return CacheIntcc;
525 }
double getKc_abs2_t_1mt(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
double getKc_abs2_t(double t)
The function .
unsigned int IntccCached
double Bsgamma::Int_cc1 ( double  E0)

Integral of the functions getKc_abs2_1mt() and getKc_abs2_1mt^().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} |k_c(t)|^2(1-t) + \int_{1-\delta(E_0)}^1 |k_c(t)|^2(1-t)^2\)

Definition at line 527 of file Flavour/src/bsgamma.cpp.

528 {
529  if (Intcc1Cached == 0) {
530  double t1 = (1. - delta(E0));
531 
532  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_abs2_1mt, &(*this), _1));
533  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
534  double mt = avaINT;
535 
536  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_abs2_1mt2, &(*this), _1));
537  if (gsl_integration_cquad(&INT, t1, 1., 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
538  double mt2 = avaINT;
539 
540  CacheIntcc1 = delta(E0)*mt + mt2;
541  Intcc1Cached = 1;
542  }
543 
544  return CacheIntcc1;
545 }
double getKc_abs2_1mt2(double t)
The function .
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
double getKc_abs2_1mt(double t)
The function .
unsigned int Intcc1Cached
double Bsgamma::Int_cc1_part1 ( double  E0)

Integral of the functions getKc_abs2_1mt().

Parameters
[in]E0energy cutoff
Returns
\(\delta(E_0)\int_0^{1-\delta(E_0)} |k_c(t)|^2(1-t)\)

Definition at line 547 of file Flavour/src/bsgamma.cpp.

548 {
549  if (Intcc1p1Cached == 0) {
550  double t1 = (1. - delta(E0));
551 
552  INT = convertToGslFunction(boost::bind(&Bsgamma::getKc_abs2_1mt, &(*this), _1));
553  if (gsl_integration_cquad(&INT, 0., t1, 1.e-2, 1.e-1, w_INT, &avaINT, &errINT, NULL) != 0) return std::numeric_limits<double>::quiet_NaN();
554 
556  Intcc1p1Cached = 1;
557  }
558 
559  return CacheIntcc1p1;
560 }
gsl_function INT
gsl_function convertToGslFunction(const F &f)
Definition: MVll.h:38
unsigned int Intcc1p1Cached
double delta(double E0)
The cutoff energy function .
gsl_integration_cquad_workspace * w_INT
double getKc_abs2_1mt(double t)
The function .
double CacheIntcc1p1
gslpp::complex Bsgamma::kappa ( double  Mq,
double  t 
)

The function \( k \) as defined in [113] .

Parameters
[in]Mqquark mass
[in]tdummy variable to be integrated out
Returns
\( k \)

Definition at line 241 of file Flavour/src/bsgamma.cpp.

242 {
243  double s = t * Mb_kin*Mb_kin/Mq/Mq;
244  return 1./2. + Gamma_t(s)/s;
245 }
gslpp::complex Gamma_t(double t)
The function as defined in .
double Bsgamma::Kij_1 ( int  i,
int  j,
double  E0,
double  mu 
)

The \( K_{ij}^{(1)} \) function from [109] .

Parameters
[in]ifirst index
[in]jsecond index
[in]E0energy cutoff
[in]mulow scale of the decay
Returns
\( K_{ij}^{(1)} \)

Definition at line 969 of file Flavour/src/bsgamma.cpp.

970 {
971  if (i > 8 || j>8 || i<1 || j<1) throw std::runtime_error("Bsgamma::Kij_1(): indexes (i,j) must be included in (1,..,8)");
972 
973  int temp;
974 
975  if (i > j) {temp=i; i=j; j=temp;}
976 
977  double gamma_i7[8] = {-208./243., 416./81., -176./81., -152./243., -6272./81., 4624./243., 32./3., -32./9.};
978  double K_ij[8][8];
979  double Lb = log(mu/Mb_kin);
980 
981  K_ij[0][0] = 4.*Phi11_1(E0);
982  K_ij[0][1] = 2.*Phi12_1(E0);
983  K_ij[0][2] = 2.*Phi13_1(E0);
984  K_ij[0][3] = 2.*Phi14_1(E0);
985  K_ij[0][4] = 2.*Phi15_1(E0);
986  K_ij[0][5] = 2.*Phi16_1(E0);
987  K_ij[0][6] = r1(1,zeta()).real() - gamma_i7[0]*Lb + 2.*Phi17_1(E0, zeta());
988  K_ij[0][7] = 2.*Phi18_1(E0, zeta());
989 
990  K_ij[1][1] = 4.*Phi22_1(E0);
991  K_ij[1][2] = 2.*Phi23_1(E0);
992  K_ij[1][3] = 2.*Phi24_1(E0);
993  K_ij[1][4] = 2.*Phi25_1(E0);
994  K_ij[1][5] = 2.*Phi26_1(E0);
995  K_ij[1][6] = r1(2,zeta()).real() - gamma_i7[1]*Lb + 2.*Phi27_1(E0, zeta());
996  K_ij[1][7] = 2.*Phi28_1(E0, zeta());
997 
998  K_ij[2][2] = 4.*Phi33_1(E0);
999  K_ij[2][3] = 2.*Phi34_1(E0);
1000  K_ij[2][4] = 2.*Phi35_1(E0);
1001  K_ij[2][5] = 2.*Phi36_1(E0);
1002  K_ij[2][6] = r1(3,zeta()).real() - gamma_i7[2]*Lb + 2.*Phi37_1(E0);
1003  K_ij[2][7] = 2.*Phi38_1(E0);
1004 
1005  K_ij[3][3] = 4.*Phi44_1(E0);
1006  K_ij[3][4] = 2.*Phi45_1(E0);
1007  K_ij[3][5] = 2.*Phi46_1(E0);
1008  K_ij[3][6] = r1(4,zeta()).real() - gamma_i7[3]*Lb + 2.*Phi47_1(E0);
1009  K_ij[3][7] = 2.*Phi48_1(E0);
1010 
1011  K_ij[4][4] = 4.*Phi55_1(E0);
1012  K_ij[4][5] = 2.*Phi56_1(E0);
1013  K_ij[4][6] = r1(5,zeta()).real() - gamma_i7[4]*Lb + 2.*Phi57_1(E0);
1014  K_ij[4][7] = 2.*Phi58_1(E0);
1015 
1016  K_ij[5][5] = 4.*Phi66_1(E0);
1017  K_ij[5][6] = r1(6,zeta()).real() - gamma_i7[5]*Lb + 2.*Phi67_1(E0);
1018  K_ij[5][7] = 2.*Phi68_1(E0);
1019 
1020  K_ij[6][6] = -182./9. + 8./9.*M_PI*M_PI - gamma_i7[6]*2.*Lb + 4.*Phi77_1(E0);
1021  K_ij[6][7] = r1(8,zeta()).real() - gamma_i7[7]*Lb + 2.*Phi78_1(E0);
1022 
1023  K_ij[7][7] = 4.*Phi88_1(E0);
1024 
1025  return K_ij[i-1][j-1];
1026 }
double Phi33_1(double E0)
The function obtained using the prescription of .
double Phi14_1(double E0)
The function obtained using the prescription of .
double Phi28_1(double E0, double z)
The function from .
double Phi34_1(double E0)
The function obtained using the prescription of .
double Phi78_1(double E0)
The function from .
double Phi26_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi58_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi17_1(double E0, double z)
The function from .
gslpp::complex r1(int i, double z)
The funcion as defined in .
double Phi23_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi22_1(double E0)
The function from .
double Phi48_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi44_1(double E0)
The function obtained using the prescription of .
const double & real() const
double Phi46_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi16_1(double E0)
The function obtained using the prescription of .
double Phi25_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi88_1(double E0)
The function from .
double Phi77_1(double E0)
The function from .
double Phi24_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi45_1(double E0)
The function obtained using the prescription of .
double Phi15_1(double E0)
The function obtained using the prescription of .
double Phi66_1(double E0)
The function obtained using the prescription of .
double Phi55_1(double E0)
The function obtained using the prescription of .
double Phi38_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double zeta()
The squared ratio between and , .
double Phi47_1(double E0)
The function from and adding the 4-body contribution from .
double Phi13_1(double E0)
The function obtained using the prescription of .
double Phi18_1(double E0, double z)
The function from .
double Phi56_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi35_1(double E0)
The function obtained using the prescription of .
double Phi12_1(double E0)
The function from .
complex log(const complex &z)
double Phi68_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi36_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi11_1(double E0)
The function from .
double Phi57_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi27_1(double E0, double z)
The function from .
double Phi37_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi67_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::N ( double  E0,
double  mu 
)

The non perturbative part of the \(BR\) as defined in [41] , \(N\).

Parameters
[in]E0energy cutoff
[in]mub quark scale
Returns
\(N\)

Definition at line 1216 of file Flavour/src/bsgamma.cpp.

1217 {
1218  return N_27() + N_77(E0,mu) + BLNPcorr * P0(E0);
1219 }
double N_27()
The non perturbative part of the due to interference as defined in , .
double P0(double E0)
The perturbative part of the BR as defined in .
double N_77(double E0, double mu)
The non perturbative part of the due to interference as defined in , .
double Bsgamma::N_27 ( )

The non perturbative part of the \(BR\) due to \(Q_2-Q_7\) interference as defined in [81] , \(N_{27}\).

Returns
\(N_{27}\)

Definition at line 1161 of file Flavour/src/bsgamma.cpp.

1162 {
1163  double mcnorm = 1.131; // value fixed according to arXiv:1003.5012, in order to employ the remaining corrections given in that work
1164  double lambda2 = mu_G2/3.;
1165 
1166  return -1./18. * (C7_0 * ( 2.*C2_0 - C1_0/3. )).real() * lambda2/mcnorm/mcnorm;
1167 }
gslpp::complex C1_0
gslpp::complex C7_0
gslpp::complex C2_0
An observable class for the quartic Higgs potential coupling .
double Bsgamma::N_77 ( double  E0,
double  mu 
)

The non perturbative part of the \(BR\) due to \(Q_7-Q_7\) interference as defined in [73] , \(N_{77}\).

Parameters
[in]E0energy cutoff
[in]mub quark scale
Returns
\(N_{77}\)

Definition at line 1169 of file Flavour/src/bsgamma.cpp.

1170 {
1171  double z = 1. - delta(E0);
1172  double z2 = z*z;
1173  double z3 = z2*z;
1174  double z4 = z3*z;
1175  double umz2 = (1.-z)*(1.-z);
1176  double Lz = log(1. - z);
1177  double Lz2 = Lz*Lz;
1178  double Lb = 2. * log(mu/Mb_kin);
1179 
1180  double corrLambda2_rad;
1181  double corrLambda2_sem;
1182  double corrLambda2_mix;
1183  double corrLambda2;
1184  double corrLambda3;
1185 
1186  double alsb = SM.Alstilde5(Mb_kin);
1187  double Lambda_pert = 64./9. * alsb * mu_kin *
1188  (1. + 4. * alsb * (9./2. * (log(Mb_kin/2./mu_kin) + 8./3.)
1189  - 3. * (M_PI*M_PI/6. - 13./12.)) );
1190  double mu_pi2_pert = 3./4. * mu_kin * Lambda_pert - 48. * alsb*alsb * mu_kin*mu_kin;
1191  double rho_D3_pert = 1./2. * mu_kin*mu_kin * Lambda_pert - 128./3. * alsb*alsb * mu_kin*mu_kin*mu_kin;
1192 
1193  double lambda1 = -mu_pi2 + mu_pi2_pert;
1194  double lambda2 = mu_G2/3.;
1195  double rho1 = rho_D3 - rho_D3_pert;
1196 
1197  double f1EGN = 16./9. * ( 4. - M_PI*M_PI) - 8./3. * Lz2 -
1198  ( 4. * z * ( 30. - 63. * z + 31. * z2 + 5. * z3))/(9. * umz2) -
1199  ( 4. * (30. - 72. * z + 51. * z2 - 2. * z3 - 3. * z4))/(9. * umz2) * Lz;
1200  double f2EGN = -2./9. * ( 87. + 32. * M_PI*M_PI) - 32./3. * Lz2 +
1201  2. * ( 162. - 244. * z + 113. * z2 - 7. * z3)/(3. * (1. - z)) * Lz +
1202  2. * z * ( 54 - 49. * z + 15. * z2)/(1. - z);
1203 
1204  corrLambda2_rad = lambda1 * ( f1EGN/8. - 4./3. * (Lb + 1.) )
1205  + lambda2 * (f2EGN/8. + 12. * (Lb + 1.) );
1206  corrLambda2_sem = -3. * 4.98 * lambda2 + (25. - 4. * M_PI*M_PI)/12.*lambda1;
1207  corrLambda2_mix = 1./8. * (9. * lambda2 - lambda1) * Kij_1(7,7,E0,mu);
1208 
1209  corrLambda2 = corrLambda2_rad - corrLambda2_sem + corrLambda2_mix;
1210 
1211  corrLambda3 = (-88./6. + 16.*log(2.))* rho1 /Mb_kin/Mb_kin/Mb_kin;
1212 
1213  return (C7_0.abs2() + C7p_0.abs2()) * (4. * Alstilde / Mb_kin / Mb_kin * corrLambda2 + corrLambda3);
1214 }
double abs2() const
An observable class for the quartic Higgs potential coupling .
double delta(double E0)
The cutoff energy function .
gslpp::complex C7_0
double Kij_1(int i, int j, double E0, double mu)
The function from .
const StandardModel & SM
A reference to an object of StandardMode class.
Definition: ThObservable.h:99
complex log(const complex &z)
An observable class for the quartic Higgs potential coupling .
gslpp::complex C7p_0
double Bsgamma::omega ( double  E0)

The cutoff energy function \( \omega \) as defined in [94] .

Parameters
[in]E0cutoff energy
Returns
\( \omega(E0) \)

Definition at line 73 of file Flavour/src/bsgamma.cpp.

74 {
75  double d=delta(E0);
76  double d2=d*d;
77  double d3=d2*d;
78  double d4=d3*d;
79 
80  return 3./2. * d2 - 2. * d3 + d4;
81 }
double delta(double E0)
The cutoff energy function .
double Bsgamma::P ( double  E0,
double  mu_b,
double  mu_c,
orders  order,
bool  CPodd 
)

The perturbative part of the \(BR\) as defined in [109] , \(P\).

Parameters
[in]E0energy cutoff
[in]mu_bb quark scale
[in]mu_cc quark scale
[in]orderperturbation theory order
[in]CPoddswitch to allow for CPodd terms
Returns
\(P\)

Definition at line 1145 of file Flavour/src/bsgamma.cpp.

1146 {
1147  switch(order) {
1148  case NLO:
1149  return P0(E0) + Alstilde * (P11() + P21(E0,mu_b)) + Vub_NLO(E0, CPodd);
1150  break;
1151  case LO:
1152  return P0(E0);
1153  break;
1154  default:
1155  std::stringstream out;
1156  out << order;
1157  throw std::runtime_error("Bsgamma::P(): order " + out.str() + " not implemented");
1158  }
1159 }
double Vub_NLO(double E0, bool CPodd)
The total NLO Vub part of the , .
double P0(double E0)
The perturbative part of the BR as defined in .
double P21(double E0, double mu)
The perturbative part of the BR as defined in .
Definition: OrderScheme.h:33
double P11()
The perturbative part of the BR as defined in .
double Bsgamma::P0 ( double  E0)

The perturbative part \( P^{(0)} \) of the BR as defined in [109] .

Parameters
[in]E0energy cutoff
Returns
\( P^{(0)} \)

Definition at line 1056 of file Flavour/src/bsgamma.cpp.

1057 {
1058  return C7_0.abs2() + C7p_0.abs2() + P0_4body(E0,Mb_kin*Mb_kin/Ms/Ms);
1059 }
double abs2() const
double P0_4body(double E0, double t)
The 4-body LO contribution as defined in .
gslpp::complex C7_0
gslpp::complex C7p_0
double Bsgamma::P0_4body ( double  E0,
double  t 
)

The 4-body LO contribution as defined in [94] .

Parameters
[in]E0cutoff energy
[in]tsquared ratio between b quark and s quark masses
Returns
\( P_{tree}^{(0)} \)

Definition at line 127 of file Flavour/src/bsgamma.cpp.

128 {
129  gslpp::complex A1 =-C1_0*CKMu;
130  gslpp::complex A2 =-C2_0*CKMu;
131 
132  return (C3_0.abs2() + 20. * (C3_0*C5_0).real() + 2./9. * C4_0.abs2()
133  + 40./9. * (C4_0*C6_0).real() + 136. * C5_0.abs2()
134  + 272./9. * C6_0.abs2()) * T1(E0,t)
135  + (2./9. * A1.abs2() + A2.abs2()
136  + (8./9. * C3_0.real()
137  - 4./27. * C4_0.real() + 128./9. * C5_0.real()
138  - 64./27. * C6_0.real()) * A1.real()
139  +(2./3. * C3_0.real() + 8./9. * C4_0.real() + 32./3. * C5_0.real()
140  + 128./9. * C6_0.real()) * A2.real()) * T2(E0,t)
141  + (C3_0.abs2() + 8./3. * (C3_0*C4_0).real() + 32. * (C3_0*C5_0).real()
142  + 128./3. * (C3_0*C6_0).real() - 2./9. * C4_0.abs2()
143  + 128./3. * (C4_0*C5_0).real() - 64./9. * (C4_0*C6_0).real()
144  + 256. * C5_0.abs2() + 2048./3 * (C5_0*C6_0).real()
145  - 512./9. * C6_0.abs2()) * T3(E0,t);
146 }
gslpp::complex C1_0
double abs2() const
gslpp::complex CKMu
const double & real() const
double T2(double E0, double t)
The cutoff energy function as defined in .
double T1(double E0, double t)
The cutoff energy function as defined in .
gslpp::complex C6_0
gslpp::complex C5_0
double T3(double E0, double t)
The cutoff energy function as defined in .
gslpp::complex C2_0
gslpp::complex C3_0
A class for defining operations on and functions of complex numbers.
Definition: gslpp_complex.h:35
gslpp::complex C4_0
double Bsgamma::P11 ( )

The perturbative part \( P_1^{(1)} \) of the BR as defined in [109] .

Returns
\( P_1^{(1)} \)

Definition at line 1061 of file Flavour/src/bsgamma.cpp.

1062 {
1063  return 2.*((C7_0*C7_1).real() + (C7p_0*C7p_1).real()); /*CHECK SIGN*/
1064 }
gslpp::complex C7_0
gslpp::complex C7_1
gslpp::complex C7p_1
gslpp::complex C7p_0
double Bsgamma::P12 ( )

The perturbative part \( P_1^{(2)} \) of the BR as defined in [109] .

Returns
\( P_1^{(2)} \)
double Bsgamma::P21 ( double  E0,
double  mu 
)

The perturbative part \( P_2^{(1)} \) of the BR as defined in [109] .

Parameters
[in]E0energy cutoff
[in]mulow scale of the decay
Returns
\( P_2^{(1)} \)

Definition at line 1066 of file Flavour/src/bsgamma.cpp.

1067 {
1068  int i,j;
1070  gslpp::complex C0p[8]={C7p_0}; /*IMPLEMENT OTHER WC*/
1071  double p21=0.;
1072 
1073  for(i=0;i<8;i++)
1074  {
1075  for(j=0;j<8;j++)
1076  {
1077  p21 += (C0[i]*C0[j]).real() * Kij_1(i+1,j+1,E0,mu);
1078  }
1079  }
1080 
1081  for(i=6;i<7;i++) /*CHECK ALGORITHM*/
1082  {
1083  for(j=6;j<7;j++)
1084  {
1085  p21 += (C0p[i]*C0p[j]).real() * Kij_1(i+1,j+1,E0,mu);
1086  }
1087  }
1088 
1089  return p21;
1090 }
gslpp::complex C1_0
gslpp::complex C6_0
gslpp::complex C5_0
gslpp::complex C7_0
gslpp::complex C2_0
gslpp::complex C3_0
double Kij_1(int i, int j, double E0, double mu)
The function from .
gslpp::complex C8_0
A class for defining operations on and functions of complex numbers.
Definition: gslpp_complex.h:35
gslpp::complex C4_0
gslpp::complex C7p_0
double Bsgamma::P22 ( double  E0,
double  mu_b,
double  mu_c 
)

The perturbative part \( P_2^{(2)} \) of the BR as defined in [109] .

Parameters
[in]E0energy cutoff
[in]mu_bb quark scale
[in]mu_cc quark scale
Returns
\( P_2^{(2)} \)
double Bsgamma::P32 ( double  E0,
double  mu 
)

The perturbative part \( P_3^{(2)} \) of the BR as defined in [109] .

Parameters
[in]E0energy cutoff
[in]mulow scale of the decay
Returns
\( P_3^{(2)} \)
double Bsgamma::Phi11_1 ( double  E0)

The \( \Phi_{11}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{11}^{(1)} \)

Definition at line 636 of file Flavour/src/bsgamma.cpp.

637 {
638  return Phi22_1(E0)/36.;
639 }
double Phi22_1(double E0)
The function from .
double Bsgamma::Phi12_1 ( double  E0)

The \( \Phi_{12}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{12}^{(1)} \)

Definition at line 641 of file Flavour/src/bsgamma.cpp.

642 {
643  return -Phi22_1(E0)/3.;
644 }
double Phi22_1(double E0)
The function from .
double Bsgamma::Phi13_1 ( double  E0)

The \( \Phi_{13}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{13}^{(1)} \)

Definition at line 646 of file Flavour/src/bsgamma.cpp.

647 {
648  return -Phi23_1(E0)/6.;
649 }
double Phi23_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::Phi14_1 ( double  E0)

The \( \Phi_{14}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{14}^{(1)} \)

Definition at line 651 of file Flavour/src/bsgamma.cpp.

652 {
653  return -Phi24_1(E0)/6.;
654 }
double Phi24_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::Phi15_1 ( double  E0)

The \( \Phi_{15}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{15}^{(1)} \)

Definition at line 656 of file Flavour/src/bsgamma.cpp.

657 {
658  return -Phi25_1(E0)/6.;
659 }
double Phi25_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::Phi16_1 ( double  E0)

The \( \Phi_{16}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{16}^{(1)} \)

Definition at line 661 of file Flavour/src/bsgamma.cpp.

662 {
663  return -Phi26_1(E0)/6.;
664 }
double Phi26_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::Phi17_1 ( double  E0,
double  z 
)

The \( \Phi_{17}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
[in]zsquared ratio between \(m_c\) and \(m_b^{\rm kin}\)
Returns
\( \Phi_{17}^{(1)} \)

Definition at line 666 of file Flavour/src/bsgamma.cpp.

667 {
668  return -Phi27_1(E0,z)/6.;
669 }
double Phi27_1(double E0, double z)
The function from .
double Bsgamma::Phi18_1 ( double  E0,
double  z 
)

The \( \Phi_{18}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
[in]zsquared ratio between \(m_c\) and \(m_b^{\rm kin}\)
Returns
\( \Phi_{18}^{(1)} \)

Definition at line 671 of file Flavour/src/bsgamma.cpp.

672 {
673  return Phi27_1(E0,z)/18.;
674 }
double Phi27_1(double E0, double z)
The function from .
double Bsgamma::Phi22_1 ( double  E0)

The \( \Phi_{22}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{22}^{(1)} \)

Definition at line 676 of file Flavour/src/bsgamma.cpp.

677 {
678  return 16./27. * Int_cc1(E0);
679 }
double Int_cc1(double E0)
Integral of the functions getKc_abs2_1mt() and getKc_abs2_1mt^().
double Bsgamma::Phi23_1 ( double  E0)

The \( \Phi_{23}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{23}^{(1)} \)

Definition at line 689 of file Flavour/src/bsgamma.cpp.

690 {
691  return -8./27. * (Int_c1(E0) + Int_c2(E0) + 2.*Int_bc1(E0) - 2.*Int_bc2(E0))
692  - Phi23_1_4body(E0);
693 }
double Int_c2(double E0)
Integral of the functions getKc_re_t_1mt() and getKc_re_t_1mt2().
double Int_bc1(double E0)
Integral of the functions getKc_re_Kb_1mt() and getKc_re_Kb_1mt2().
double Int_bc2(double E0)
Integral of the functions getKc_re_Kb_t_1mt() and getKc_re_Kb_t_1mt2().
double Int_c1(double E0)
Integral of the functions getKc_re_1mt() and getKc_re_1mt2().
double Phi23_1_4body(double E0)
The function obtained from .
double Bsgamma::Phi23_1_4body ( double  E0)

The \( \Phi_{23}^{(1),{\rm 4-body}} \) function obtained from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{23}^{(1),{\rm 4-body}} \)

Definition at line 681 of file Flavour/src/bsgamma.cpp.

682 {
683  if (FOUR_BODY)
684  return 0.0039849625073434735;
685  else
686  return 0.;
687 }
#define FOUR_BODY
double Bsgamma::Phi24_1 ( double  E0)

The \( \Phi_{24}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{24}^{(1)} \)

Definition at line 703 of file Flavour/src/bsgamma.cpp.

704 {
705  return -1./6. * (Phi23_1(E0) + Phi23_1_4body(E0))
706  - Phi24_1_4body(E0);
707 }
double Phi23_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Phi23_1_4body(double E0)
The function obtained from .
double Phi24_1_4body(double E0)
The function obtained from .
double Bsgamma::Phi24_1_4body ( double  E0)

The \( \Phi_{24}^{(1),{\rm 4-body}} \) function obtained from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{24}^{(1),{\rm 4-body}} \)

Definition at line 695 of file Flavour/src/bsgamma.cpp.

696 {
697  if (FOUR_BODY)
698  return 0.012330977673588935;
699  else
700  return 0.;
701 }
#define FOUR_BODY
double Bsgamma::Phi25_1 ( double  E0)

The \( \Phi_{25}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{25}^{(1)} \)

Definition at line 717 of file Flavour/src/bsgamma.cpp.

718 {
719  return -32./27. * (4.*Int_c1(E0) + Int_c2(E0) + 8.*Int_bc1(E0) - 2.*Int_bc2(E0))
720  - Phi25_1_4body(E0);
721 }
double Int_c2(double E0)
Integral of the functions getKc_re_t_1mt() and getKc_re_t_1mt2().
double Int_bc1(double E0)
Integral of the functions getKc_re_Kb_1mt() and getKc_re_Kb_1mt2().
double Int_bc2(double E0)
Integral of the functions getKc_re_Kb_t_1mt() and getKc_re_Kb_t_1mt2().
double Int_c1(double E0)
Integral of the functions getKc_re_1mt() and getKc_re_1mt2().
double Phi25_1_4body(double E0)
The function obtained from .
double Bsgamma::Phi25_1_4body ( double  E0)

The \( \Phi_{25}^{(1),{\rm 4-body}} \) function obtained from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{25}^{(1),{\rm 4-body}} \)

Definition at line 709 of file Flavour/src/bsgamma.cpp.

710 {
711  if (FOUR_BODY)
712  return 0.06375940011749558;
713  else
714  return 0.;
715 }
#define FOUR_BODY
double Bsgamma::Phi26_1 ( double  E0)

The \( \Phi_{26}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{26}^{(1)} \)

Definition at line 731 of file Flavour/src/bsgamma.cpp.

732 {
733  return 16./81. * (4.*Int_c1(E0) + Int_c2(E0) - 10.*Int_bc1(E0) - 2.*Int_bc2(E0) + 36.*Int_cc1(E0))
734  - Phi26_1_4body(E0);
735 }
double Int_c2(double E0)
Integral of the functions getKc_re_t_1mt() and getKc_re_t_1mt2().
double Phi26_1_4body(double E0)
The function obtained from .
double Int_bc1(double E0)
Integral of the functions getKc_re_Kb_1mt() and getKc_re_Kb_1mt2().
double Int_bc2(double E0)
Integral of the functions getKc_re_Kb_t_1mt() and getKc_re_Kb_t_1mt2().
double Int_cc1(double E0)
Integral of the functions getKc_abs2_1mt() and getKc_abs2_1mt^().
double Int_c1(double E0)
Integral of the functions getKc_re_1mt() and getKc_re_1mt2().
double Bsgamma::Phi26_1_4body ( double  E0)

The \( \Phi_{26}^{(1),{\rm 4-body}} \) function obtained from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{26}^{(1),{\rm 4-body}} \)

Definition at line 723 of file Flavour/src/bsgamma.cpp.

724 {
725  if (FOUR_BODY)
726  return 0.11932481422855279;
727  else
728  return 0.;
729 }
#define FOUR_BODY
double Bsgamma::Phi27_1 ( double  E0,
double  z 
)

The \( \Re \Phi_{27}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
[in]zsquared ratio between \(m_c\) and \(m_b^{\rm kin}\)
Returns
\( \Re \Phi_{27}^{(1)} \)

Definition at line 737 of file Flavour/src/bsgamma.cpp.

738 {
739  double d = delta(E0);
740  double d2 = d*d;
741  double Pi2 = M_PI*M_PI;
742  double st0 = sqrt(1. - 4.*z);
743  double std = sqrt( (1. - d - 4.*z) * (1. - d) );
744  double L0 = log( ( 1. + st0 ) / ( 2.*sqrt(z) ) );
745  double Ld = log( ( sqrt(1. - d) + sqrt(1. - d - 4.*z) ) / ( 2.*sqrt(z) ) );
746 
747  if (d == 1) {
748  return -2./27. + (2.*Pi2 - 7.)/9. * z + 4.*(3. - 2.*Pi2)/9. * z * z
749  + 4./3. * z * (1. - 2.*z) * st0 * L0
750  - 8./9. * z * (6.*z*z - 4.*z + 1.) * L0*L0 + 4./3. * Pi2 * z * z *z;
751  } else return -2./27. * d * (3. - 3.*d + d2) + (2.*Pi2 - 7.)/9. * z * d * (2. - d)
752  + 4.*(3. - 2.*Pi2)/9. * z * z * d
753  + 4./3. * z * (1. - 2.*z) * ( st0 * L0 - std * Ld )
754  + 4./3. * z * d * std * Ld
755  - 8./9. * z * (6.*z*z - 4.*z + 1.) * ( L0*L0 - Ld*Ld )
756  - 8./9. * z * d * (2. - d - 4.*z) * Ld * Ld;
757 }
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
complex sqrt(const complex &z)
double Bsgamma::Phi27_1_im ( double  E0,
double  z 
)

The \( \Im\Phi_{27}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
[in]zsquared ratio between \(m_c\) and \(m_b^{\rm kin}\)
Returns
\( \Im\Phi_{27}^{(1)} \)

Definition at line 759 of file Flavour/src/bsgamma.cpp.

760 {
761  if (z >= 1./4.)
762  throw std::runtime_error("Bsgamma::Phi27_1_im(): z can not be greater than 1/4");
763 
764  double d = delta(E0);
765  double z2 = z*z;
766  double st0 = sqrt(1. - 4.*z);
767  double std = sqrt( (1. - d - 4.*z) * (1. - d) );
768  double L0 = log( ( 1. + st0 ) / ( 2.*sqrt(z) ) );
769  double Ld = log( ( sqrt(1. - d) + sqrt(1. - d - 4.*z) ) / ( 2.*sqrt(z) ) );
770 
771  if (z < (1. - d)/4.)
772  return 8./9. * M_PI * z * ( (1. - 4. * z + 6. * z2)* (L0-Ld) - 3./4. * (1. - 2. * z) * (st0-std)
773  + d * (2. - d - 4. * z) * Ld - 3./4. * d * std );
774  else
775  return 8./9. * M_PI * z * ( (1. - 4. * z + 6. * z2) * L0 - 3./4. * (1. - 2. * z) * st0 );
776 }
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
complex sqrt(const complex &z)
double Bsgamma::Phi28_1 ( double  E0,
double  z 
)

The \( \Phi_{28}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
[in]zsquared ratio between \(m_c\) and \(m_b^{\rm kin}\)
Returns
\( \Phi_{28}^{(1)} \)

Definition at line 778 of file Flavour/src/bsgamma.cpp.

779 {
780  return -Phi27_1(E0, z)/3.;
781 }
double Phi27_1(double E0, double z)
The function from .
double Bsgamma::Phi33_1 ( double  E0)

The \( \Phi_{33}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{33}^{(1)} \)

Definition at line 783 of file Flavour/src/bsgamma.cpp.

784 {
785  double d=delta(E0);
786  double d2=d*d;
787  double d3=d2*d;
788  double d4=d3*d;
789 
790  return 2./27. * (Int_b1(E0) + 8.*Int_b2(E0) - 4.*Int_b4(E0)
791  + 33.*Int_bb1(E0) - 20.*Int_bb2(E0) + 4.*Int_bb4(E0))
792  + 1./18. * d * ( 1./2. - 1./2.*d2 + 1./3.*d3 - 1./15.*d4 );
793 }
double Int_bb2(double E0)
Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2().
double Int_b4(double E0)
Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2().
double delta(double E0)
The cutoff energy function .
double Int_bb4(double E0)
Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2().
double Int_b2(double E0)
Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2().
double Int_b1(double E0)
Integral of the functions getKb_re_1mt() and getKb_re_1mt2().
double Int_bb1(double E0)
Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2().
double Bsgamma::Phi34_1 ( double  E0)

The \( \Phi_{34}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{34}^{(1)} \)

Definition at line 795 of file Flavour/src/bsgamma.cpp.

796 {
797  return -1./3.*Phi33_1(E0);
798 }
double Phi33_1(double E0)
The function obtained using the prescription of .
double Bsgamma::Phi35_1 ( double  E0)

The \( \Phi_{35}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{35}^{(1)} \)

Definition at line 800 of file Flavour/src/bsgamma.cpp.

801 {
802  double d=delta(E0);
803  double d2=d*d;
804  double d3=d2*d;
805  double d4=d3*d;
806 
807  return 32./27. * (2.*Int_b1(E0) + 4.*Int_b2(E0) - 2.*Int_b4(E0)
808  + 18.*Int_bb1(E0) - 13.*Int_bb2(E0) + 2.*Int_bb4(E0))
809  + 4./9. * d * ( 4./3. - d2 + 1./2.*d3 - 1./15.*d4 );
810 }
double Int_bb2(double E0)
Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2().
double Int_b4(double E0)
Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2().
double delta(double E0)
The cutoff energy function .
double Int_bb4(double E0)
Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2().
double Int_b2(double E0)
Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2().
double Int_b1(double E0)
Integral of the functions getKb_re_1mt() and getKb_re_1mt2().
double Int_bb1(double E0)
Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2().
double Bsgamma::Phi36_1 ( double  E0)

The \( \Phi_{36}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{36}^{(1)} \)

Definition at line 812 of file Flavour/src/bsgamma.cpp.

813 {
814  double d=delta(E0);
815  double d2=d*d;
816  double d3=d2*d;
817  double d4=d3*d;
818 
819  return 8./81. * (5.*Int_b1(E0) + Int_b2(E0) + 4.*Int_b4(E0)
820  - 18.*Int_bb1(E0) + 8.*Int_bb2(E0) - 4.*Int_bb4(E0))
821  + 6. * (Phi23_1(E0) + Phi23_1_4body(E0))
822  - 2./27. * d * ( 4./3. - d2 + 1./2.*d3 - 1./15.*d4 );
823 }
double Int_bb2(double E0)
Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2().
double Phi23_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Int_b4(double E0)
Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2().
double delta(double E0)
The cutoff energy function .
double Int_bb4(double E0)
Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2().
double Phi23_1_4body(double E0)
The function obtained from .
double Int_b2(double E0)
Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2().
double Int_b1(double E0)
Integral of the functions getKb_re_1mt() and getKb_re_1mt2().
double Int_bb1(double E0)
Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2().
double Bsgamma::Phi37_1 ( double  E0)

The \( \Phi_{37}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{37}^{(1)} \)

Definition at line 825 of file Flavour/src/bsgamma.cpp.

826 {
827  double d=delta(E0);
828  double d2=d*d;
829 
830  return -4./3. * Int_b3(E0) + 1./9. * d * (1. - d + 1./3.*d2) + 1./4.*ff7_sMP(E0);
831 }
double delta(double E0)
The cutoff energy function .
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Int_b3(double E0)
Integral of the functions getKb_re_t() and getKb_re_t_1mt().
double Bsgamma::Phi38_1 ( double  E0)

The \( \Phi_{38}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{38}^{(1)} \)

Definition at line 833 of file Flavour/src/bsgamma.cpp.

834 {
835  return -1./3. * ( Phi37_1(E0) - 1./4.*ff7_sMP(E0) ) + 1./4.*ff8_sMP(E0);
836 }
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double ff8_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Phi37_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::Phi44_1 ( double  E0)

The \( \Phi_{44}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{44}^{(1)} \)

Definition at line 838 of file Flavour/src/bsgamma.cpp.

839 {
840  return 1./36. * Phi33_1(E0);
841 }
double Phi33_1(double E0)
The function obtained using the prescription of .
double Bsgamma::Phi45_1 ( double  E0)

The \( \Phi_{45}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{45}^{(1)} \)

Definition at line 843 of file Flavour/src/bsgamma.cpp.

844 {
845  return -1./6. * Phi35_1(E0);
846 }
double Phi35_1(double E0)
The function obtained using the prescription of .
double Bsgamma::Phi46_1 ( double  E0)

The \( \Phi_{46}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{46}^{(1)} \)

Definition at line 848 of file Flavour/src/bsgamma.cpp.

849 {
850  return -1./6. * Phi36_1(E0);
851 }
double Phi36_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::Phi47_1 ( double  E0)

The \( \Phi_{47}^{(1)} \) function from [81] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{47}^{(1)} \)

Definition at line 853 of file Flavour/src/bsgamma.cpp.

854 {
855  return -1./6. * ( Phi37_1(E0) - 1./4.*ff7_sMP(E0) )
856  + 1./4. * (-1./6. * ff7_sMP(E0) + ff7_dMP(E0));
857 }
double ff7_dMP(double E0)
The 4-body NLO correction due to and d, , from .
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Phi37_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::Phi48_1 ( double  E0)

The \( \Phi_{48}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{48}^{(1)} \)

Definition at line 859 of file Flavour/src/bsgamma.cpp.

860 {
861  return -1./3. * (Phi47_1(E0) - 1./4. * (-1./6. * ff7_sMP(E0) + ff7_dMP(E0)) )
862  + 1./4. * (-1./6. * ff8_sMP(E0) + ff8_dMP(E0));
863 }
double ff7_dMP(double E0)
The 4-body NLO correction due to and d, , from .
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Phi47_1(double E0)
The function from and adding the 4-body contribution from .
double ff8_dMP(double E0)
The 4-body NLO correction due to and d, , from .
double ff8_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Bsgamma::Phi55_1 ( double  E0)

The \( \Phi_{55}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{55}^{(1)} \)

Definition at line 865 of file Flavour/src/bsgamma.cpp.

866 {
867  double d=delta(E0);
868  double d2=d*d;
869  double d3=d2*d;
870  double d4=d3*d;
871 
872  return 128./27. * (4.*Int_b1(E0) + 2.*Int_b2(E0) - Int_b4(E0)
873  + 12.*Int_bb1(E0) - 8.*Int_bb2(E0) + Int_bb4(E0))
874  + 8./9. * d * ( 11./3. - 2.*d2 + 2./3.*d3 - 1./15.*d4 );
875 }
double Int_bb2(double E0)
Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2().
double Int_b4(double E0)
Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2().
double delta(double E0)
The cutoff energy function .
double Int_bb4(double E0)
Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2().
double Int_b2(double E0)
Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2().
double Int_b1(double E0)
Integral of the functions getKb_re_1mt() and getKb_re_1mt2().
double Int_bb1(double E0)
Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2().
double Bsgamma::Phi56_1 ( double  E0)

The \( \Phi_{56}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{56}^{(1)} \)

Definition at line 877 of file Flavour/src/bsgamma.cpp.

878 {
879  double d=delta(E0);
880  double d2=d*d;
881  double d3=d2*d;
882  double d4=d3*d;
883 
884  return 32./81. * (20.*Int_b1(E0) + Int_b2(E0) + 4.*Int_b4(E0)
885  + 24.*Int_bb1(E0) + 14.*Int_bb2(E0) - 4.*Int_bb4(E0))
886  + 6. * (Phi25_1(E0) + Phi25_1_4body(E0))
887  - 8./27. * d * ( 11./3. - 2.*d2 + 2./3.*d3 - 1./15.*d4 );
888 }
double Int_bb2(double E0)
Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2().
double Int_b4(double E0)
Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2().
double Phi25_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double delta(double E0)
The cutoff energy function .
double Int_bb4(double E0)
Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2().
double Int_b2(double E0)
Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2().
double Int_b1(double E0)
Integral of the functions getKb_re_1mt() and getKb_re_1mt2().
double Phi25_1_4body(double E0)
The function obtained from .
double Int_bb1(double E0)
Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2().
double Bsgamma::Phi57_1 ( double  E0)

The \( \Phi_{57}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{57}^{(1)} \)

Definition at line 890 of file Flavour/src/bsgamma.cpp.

891 {
892  double d=delta(E0);
893  double d2=d*d;
894 
895  return 16./9. * d * ( 1. - d + 1./3.*d2) + 4. * ff7_sMP(E0);
896 }
double delta(double E0)
The cutoff energy function .
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Bsgamma::Phi58_1 ( double  E0)

The \( \Phi_{58}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{58}^{(1)} \)

Definition at line 898 of file Flavour/src/bsgamma.cpp.

899 {
900  return -1./3. * (Phi57_1(E0) - 4. * ff7_sMP(E0))
901  + 4. * ff8_sMP(E0);
902 }
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Phi57_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double ff8_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Bsgamma::Phi66_1 ( double  E0)

The \( \Phi_{66}^{(1)} \) function obtained using the prescription of [50] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{66}^{(1)} \)

Definition at line 904 of file Flavour/src/bsgamma.cpp.

905 {
906  double d=delta(E0);
907  double d2=d*d;
908  double d3=d2*d;
909  double d4=d3*d;
910 
911  return -8./243. * (56.*Int_b1(E0) + 10.*Int_b2(E0) + 4.*Int_b4(E0)
912  + 15.*Int_bb1(E0) - 4.*Int_bb2(E0) - 4.*Int_bb4(E0))
913  + 32./27. * (4.*Int_c1(E0) + Int_c2(E0) - Int_bc1(E0)
914  - 2.*Int_bc2(E0) + 9.*Int_cc1(E0))
915  + 2./81. * d * ( 11./3. - 2.*d2 + 2./3.*d3 - 1./15.*d4 );
916 }
double Int_bb2(double E0)
Integral of the functions getKb_abs2_t_1mt() and getKb_abs2_t_1mt2().
double Int_b4(double E0)
Integral of the functions getKb_re_t2_1mt() and getKb_re_t2_1mt2().
double Int_c2(double E0)
Integral of the functions getKc_re_t_1mt() and getKc_re_t_1mt2().
double delta(double E0)
The cutoff energy function .
double Int_bc1(double E0)
Integral of the functions getKc_re_Kb_1mt() and getKc_re_Kb_1mt2().
double Int_bb4(double E0)
Integral of the functions getKb_abs2_t2_1mt() and getKb_abs2_t2_1mt2().
double Int_bc2(double E0)
Integral of the functions getKc_re_Kb_t_1mt() and getKc_re_Kb_t_1mt2().
double Int_cc1(double E0)
Integral of the functions getKc_abs2_1mt() and getKc_abs2_1mt^().
double Int_c1(double E0)
Integral of the functions getKc_re_1mt() and getKc_re_1mt2().
double Int_b2(double E0)
Integral of the functions getKb_re_t_1mt() and getKb_re_t_1mt2().
double Int_b1(double E0)
Integral of the functions getKb_re_1mt() and getKb_re_1mt2().
double Int_bb1(double E0)
Integral of the functions getKb_abs2_1mt() and getKb_abs2_1mt2().
double Bsgamma::Phi67_1 ( double  E0)

The \( \Phi_{67}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{67}^{(1)} \)

Definition at line 918 of file Flavour/src/bsgamma.cpp.

919 {
920  double d=delta(E0);
921  double d2=d*d;
922 
923  return 8./3. * (Int_b3(E0) - 2.*Int_c3(E0)) - 8./27. * d * ( 1. - d + 1./3.*d2)
924  + 1./4. * (-8./3. * ff7_sMP(E0) + 10. * ff7_dMP(E0));
925 }
double Int_c3(double E0)
Integral of the functions getKc_re_t() and getKc_re_t_1mt().
double delta(double E0)
The cutoff energy function .
double ff7_dMP(double E0)
The 4-body NLO correction due to and d, , from .
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Int_b3(double E0)
Integral of the functions getKb_re_t() and getKb_re_t_1mt().
double Bsgamma::Phi68_1 ( double  E0)

The \( \Phi_{68}^{(1)} \) function obtained using the prescription of [50] and adding the 4-body contribution from [92] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{68}^{(1)} \)

Definition at line 927 of file Flavour/src/bsgamma.cpp.

928 {
929  return -1./3. * (Phi67_1(E0) - 1./4. * (-8./3. * ff7_sMP(E0) + 10. * ff7_dMP(E0)) )
930  + 1./4. * (-8./3. * ff8_sMP(E0) + 10. * ff8_dMP(E0));
931 }
double ff7_dMP(double E0)
The 4-body NLO correction due to and d, , from .
double ff7_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double ff8_dMP(double E0)
The 4-body NLO correction due to and d, , from .
double ff8_sMP(double E0)
The 4-body NLO correction due to and s, , from .
double Phi67_1(double E0)
The function obtained using the prescription of and adding the 4-body contribution from ...
double Bsgamma::Phi77_1 ( double  E0)

The \( \Phi_{77}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{77}^{(1)} \)

Definition at line 933 of file Flavour/src/bsgamma.cpp.

934 {
935  double d=delta(E0);
936  double d2=d*d;
937  double d3=d2*d;
938 
939  return -2./3.*pow(log(d),2.) - 7./3.*log(d) - 31./9. + 10./3.*d + d2/3. - 2./9.*d3 + d*(d - 4.)*log(d)/3.;
940 }
complex pow(const complex &z1, const complex &z2)
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
double Bsgamma::Phi78_1 ( double  E0)

The \( \Phi_{78}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{78}^{(1)} \)

Definition at line 942 of file Flavour/src/bsgamma.cpp.

943 {
944  double d=delta(E0);
945  double d2=d*d;
946  double d3=d2*d;
947 
948  double Li2 = gsl_sf_dilog(1. - d);
949 
950  double pi2=M_PI*M_PI;
951 
952  return 8./9.*( Li2 - pi2/6. - d*log(d) + 9./4.*d - d2/4. + d3/12.);
953 }
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
double Bsgamma::Phi88_1 ( double  E0)

The \( \Phi_{88}^{(1)} \) function from [81] .

Parameters
[in]E0energy cutoff
Returns
\( \Phi_{88}^{(1)} \)

Definition at line 955 of file Flavour/src/bsgamma.cpp.

956 {
957  double d=delta(E0);
958  double d2=d*d;
959  double d3=d2*d;
960 
961  double Li2 = gsl_sf_dilog(1. - d);
962 
963  double pi2=M_PI*M_PI;
964 
965  return 1./27.*( -2.*log(Mb_kin/Ms)*( d2 + 2.*d + 4.*log(1. - d) ) + 4.*Li2 - 2./3.*pi2 - d*(2. + d)*log(d)
966  + 8.*log(1. - d) - 2./3.*d3 + 3.*d2 +7*d);
967 }
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
gslpp::complex Bsgamma::r1 ( int  i,
double  z 
)

The funcion \( r_i^{(1)}(z) \) as defined in [46] .

Parameters
[in]ifunction index
[in]zsquared ratio between m_c and m_b^{ kin}
Returns
\( r_i(z)^{(1)} \)

Definition at line 206 of file Flavour/src/bsgamma.cpp.

207 {
208  double Xb = -0.16844083981858157;
209 
210  switch(i){
211  case 1:
212  return 833./729. - (a(z) + b(z))/3. + 40./243.*gslpp::complex::i()*M_PI;
213  case 2:
214  return - 1666./243. + 2.*(a(z) + b(z)) - 80./81.*gslpp::complex::i()*M_PI;
215  case 3:
216  return 2392./243. + 8.*M_PI/3./sqrt(3.) + 32./9.*Xb - a(1.) + 2.*b(1.) + 56./81.*gslpp::complex::i()*M_PI;
217  case 4:
218  return -761./729. - 4.*M_PI/9./sqrt(3.) - 16./27.*Xb + a(1.)/6. + 5.*b(1.)/3. + 2.*b(z) - 148./243.*gslpp::complex::i()*M_PI;
219  case 5:
220  return 56680./243. + 32.*M_PI/3./sqrt(3.) + 128./9.*Xb - 16.*a(1.) + 32.*b(1.) + 896./81.*gslpp::complex::i()*M_PI;
221  case 6:
222  return 5710./729. - 16.*M_PI/9./sqrt(3.) - 64./27.*Xb - 10./3.*a(1.) + 44./3.*b(1.) + 12.*a(z) + 20.*b(z)
223  - 2296./243.*gslpp::complex::i()*M_PI;
224  case 8:
225  return 44./9. - 8./27.*M_PI*M_PI + 8./9.*gslpp::complex::i()*M_PI;
226  default:
227  std::stringstream out;
228  out << i;
229  throw std::runtime_error("Bsgamma::r1(): index " + out.str() + " not implemented");
230  }
231 }
gslpp::complex b(double z)
The funcion as defined in .
gslpp::complex a(double z)
The funcion as defined in .
static const complex & i()
complex sqrt(const complex &z)
double Bsgamma::rho ( double  E0)

The cutoff energy function \( \rho \) as defined in [94] .

Parameters
[in]E0cutoff energy
Returns
\( \rho(E0) \)

Definition at line 65 of file Flavour/src/bsgamma.cpp.

66 {
67  double d=delta(E0);
68  double d4=d*d*d*d;
69 
70  return d + d4/6. + log(1. - d);
71 }
double delta(double E0)
The cutoff energy function .
complex log(const complex &z)
double Bsgamma::T1 ( double  E0,
double  t 
)

The cutoff energy function \( T_1 \) as defined in [94] .

Parameters
[in]E0cutoff energy
[in]tsquared ratio between b quark and s quark masses
Returns
\( T_1(E0) \)

Definition at line 83 of file Flavour/src/bsgamma.cpp.

84 {
85  double d=delta(E0);
86  double d2=d*d;
87  double d3=d2*d;
88  double d4=d3*d;
89 
90  double Li2 = gsl_sf_dilog(d);
91 
92  return 109./18. * d + 17./18. * d2 - 191./108. * d3 + 23./16. * d4
93  + 79./18. * log(1. - d) - 5./3. * Li2
94  - (5./3. * rho(E0) + 2./9. * omega(E0)) * log(t*d)
95  /* + rho(E0)/9.*log(ms^5/(mu^4*md)) */;
96 }
double omega(double E0)
The cutoff energy function as defined in .
double delta(double E0)
The cutoff energy function .
double rho(double E0)
The cutoff energy function as defined in .
complex log(const complex &z)
double Bsgamma::T2 ( double  E0,
double  t 
)

The cutoff energy function \( T_2 \) as defined in [94] .

Parameters
[in]E0cutoff energy
[in]tsquared ratio between b quark and s quark masses
Returns
\( T_2(E0) \)

Definition at line 98 of file Flavour/src/bsgamma.cpp.

99 {
100  double d=delta(E0);
101  double d2=d*d;
102  double d3=d2*d;
103  double d4=d3*d;
104 
105  double Li2 = gsl_sf_dilog(d);
106 
107  return 187./108. * d + 7./18. * d2 - 395./648. * d3 + 1181./2592. * d4
108  + 133./108. * log(1. - d) - Li2/2.
109  - (rho(E0)/2. + 2./27. * omega(E0)) * log(t*d)
110  /* + rho(E0)/9.*log(ms/mu) */;
111 }
double omega(double E0)
The cutoff energy function as defined in .
double delta(double E0)
The cutoff energy function .
double rho(double E0)
The cutoff energy function as defined in .
complex log(const complex &z)
double Bsgamma::T3 ( double  E0,
double  t 
)

The cutoff energy function \( T_3 \) as defined in [94] .

Parameters
[in]E0cutoff energy
[in]tsquared ratio between b quark and s quark masses
Returns
\( T_3(E0) \)

Definition at line 113 of file Flavour/src/bsgamma.cpp.

114 {
115  double d=delta(E0);
116  double d2=d*d;
117  double d3=d2*d;
118  double d4=d3*d;
119 
120  double Li2 = gsl_sf_dilog(d);
121 
122  return 35./162. * d + 1./72. * d2 - 89./1944. * d3 + 341./7776. * d4
123  + 13./81. * log(1. - d) - Li2/18.
124  - (rho(E0)/18. + omega(E0)/162.) * log(t*d);
125 }
double omega(double E0)
The cutoff energy function as defined in .
double delta(double E0)
The cutoff energy function .
double rho(double E0)
The cutoff energy function as defined in .
complex log(const complex &z)
void Bsgamma::updateParameters ( )

The update parameter method for bsgamma.

Definition at line 1229 of file Flavour/src/bsgamma.cpp.

1230 {
1232  BRsl=SM.getGambino_BRsem()/100.;
1239  C=C_sem();
1240 
1241  ale=SM.getAle();
1242  E0=SM.getbsgamma_E0();
1243  mu_b=SM.getMub();
1244  mu_c=SM.getMuc();
1245  alsUps=8./M_PI * mu_kin/Mb_kin * ( 1. + 3./8. * mu_kin/Mb_kin );
1246  Alstilde = SM.Alstilde5(mu_b);
1249  V_cb=SM.getCKM().getVcb();
1251 
1253 
1254  checkCache();
1255 
1256  if (Intb_updated == 0) {
1257  Intb1Cached = 0;
1258  Intb2Cached = 0;
1259  Intb3Cached = 0;
1260  Intb4Cached = 0;
1261  Intbb1Cached = 0;
1262  Intbb2Cached = 0;
1263  Intbb4Cached = 0;
1264  }
1265  if (Intbc_updated == 0) {
1266  Intbc1Cached = 0;
1267  Intbc2Cached = 0;
1268  Intc1Cached = 0;
1269  Intc1imCached = 0;
1270  Intc2Cached = 0;
1271  Intc3Cached = 0;
1272  IntccCached = 0;
1273  Intcc1Cached = 0;
1274  Intcc1p1Cached = 0;
1275  }
1276 
1277  computeCoeff(mu_b);
1278 
1279  overall = BRsl * (lambda_t/V_cb).abs2() * 6. * ale / (M_PI * C);
1280 }
void computeCoeff(double mu)
Compute the Wilson Coefficient.
CKM getCKM() const
A get method to retrieve the member object of type CKM.
gslpp::complex V_cb
unsigned int Intbb4Cached
unsigned int Intbc1Cached
double getMub() const
A get method to access the threshold between five- and four-flavour theory in GeV.
Definition: QCD.h:905
gslpp::complex CKMu
gslpp::complex lambda_t
unsigned int Intbc_updated
complex conjugate() const
double getVcb()
Definition: CKM.cpp:247
unsigned int Intcc1p1Cached
double getGambino_Mbkin() const
Definition: QCD.h:1712
double getGambino_Mcatmuc() const
Definition: QCD.h:1720
unsigned int Intc2Cached
double getGambino_BRsem() const
Definition: QCD.h:1704
unsigned int Intc3Cached
double getGambino_muG2() const
Definition: QCD.h:1744
unsigned int Intb3Cached
unsigned int Intb4Cached
double C_sem()
The ratio as defined in , but with coefficients slightly modified due to different imput parameters...
double getbsgamma_E0() const
Definition: QCD.h:1680
unsigned int Intbc2Cached
unsigned int Intbb2Cached
unsigned int IntccCached
Particle getQuarks(const quark q) const
A get method to access a quark as an object of the type Particle.
Definition: QCD.h:869
gslpp::complex computelamt_s() const
The product of the CKM elements .
double getAle() const
A get method to retrieve the fine-structure constant .
double getGambino_mupi2() const
Definition: QCD.h:1728
const double & getMass() const
A get method to access the particle mass.
Definition: Particle.h:61
unsigned int Intc1imCached
const StandardModel & SM
A reference to an object of StandardMode class.
Definition: ThObservable.h:99
unsigned int Intc1Cached
double getMuc() const
A get method to access the threshold between four- and three-flavour theory in GeV.
Definition: QCD.h:914
unsigned int Intbb1Cached
unsigned int Intb_updated
void checkCache()
The caching method for bsgamma.
unsigned int Intb2Cached
gslpp::complex computelamu_s() const
The product of the CKM elements .
unsigned int Intcc1Cached
unsigned int Intb1Cached
double getBLNPcorr() const
Definition: QCD.h:1688
double getGambino_mukin() const
Definition: QCD.h:1696
double getGambino_rhoD3() const
Definition: QCD.h:1736
double getGambino_rhoLS3() const
Definition: QCD.h:1752
double Bsgamma::Vub_NLO ( double  E0,
bool  CPodd 
)

The total NLO Vub part of the \(BR\), \(Vub^{NLO}\).

Parameters
[in]E0energy cutoff
[in]CPoddswitch to allow for CPodd terms
Returns
\(Vub^{NLO}\)

Definition at line 1140 of file Flavour/src/bsgamma.cpp.

1141 {
1142  return Vub_NLO_2body(CPodd) + Vub_NLO_3body(E0,CPodd) + Vub_NLO_4body(E0,CPodd);
1143 }
double Vub_NLO_2body(bool CPodd)
The 2 body NLO Vub part of the as defined in , .
double Vub_NLO_3body(double E0, bool CPodd)
The 3 body NLO Vub part of the , .
double Vub_NLO_4body(double E0, bool CPodd)
The 4 body NLO Vub part of the obtained from , .
double Bsgamma::Vub_NLO_2body ( bool  CPodd)

The 2 body NLO Vub part of the \(BR\) as defined in [81] , \(Vub^{NLO}_{2b}\).

Parameters
[in]CPoddswitch to allow for CPodd terms
Returns
\(Vub^{NLO}_{2b}\)

Definition at line 1092 of file Flavour/src/bsgamma.cpp.

1093 {
1094  double z = zeta();
1095 
1096  return 4. * Alstilde * (C7_0 * ( C2_0 - C1_0/6. )).real() *
1097  (CKMu.real()*( a(z) + b(z) ).real() - CPodd * CKMu.imag()*( a(z) + b(z) ).imag());
1098 }
gslpp::complex C1_0
gslpp::complex b(double z)
The funcion as defined in .
gslpp::complex CKMu
const double & real() const
gslpp::complex a(double z)
The funcion as defined in .
gslpp::complex C7_0
gslpp::complex C2_0
double zeta()
The squared ratio between and , .
const double & imag() const
double Bsgamma::Vub_NLO_3body ( double  E0,
bool  CPodd 
)

The 3 body NLO Vub part of the \(BR\), \(Vub^{NLO}_{3b}\).

Parameters
[in]E0energy cutoff
[in]CPoddswitch to allow for CPodd terms
Returns
\(Vub^{NLO}_{3b}\)

Definition at line 1100 of file Flavour/src/bsgamma.cpp.

1101 {
1102  double d = delta(E0);
1103 
1104  return 64./27. * Alstilde * ( C2_0 - C1_0/6. ).abs2() *
1105  ( CKMu.real() * ( 2. * Int_cc1(E0) - Int_c1(E0) )
1106  + CKMu.abs2() * ( Int_cc1(E0) - Int_c1(E0) + 1./8. * d * ( 1. - 1./3. * d*d ) )
1107  - CPodd * CKMu.imag() * Int_c1_im(E0) )
1108  + 4. * Alstilde * (( C7_0 - C8_0/3. ) * ( C2_0 - C1_0/6. )).real() *
1109  ( CKMu.real() * ( Phi27_1(E0,zeta()) + 2./9. * d * ( 1. - d + 1./3. * d*d ) )
1110  - CPodd * CKMu.imag() * Phi27_1_im(E0,zeta()) );
1111 }
gslpp::complex C1_0
double abs2() const
gslpp::complex CKMu
const double & real() const
double delta(double E0)
The cutoff energy function .
double Int_c1_im(double E0)
Integral of the functions getKc_im_1mt() and getKc_im_1mt2().
gslpp::complex C7_0
gslpp::complex C2_0
double zeta()
The squared ratio between and , .
double Int_cc1(double E0)
Integral of the functions getKc_abs2_1mt() and getKc_abs2_1mt^().
double Int_c1(double E0)
Integral of the functions getKc_re_1mt() and getKc_re_1mt2().
gslpp::complex C8_0
const double & imag() const
double Phi27_1_im(double E0, double z)
The function from .
double Phi27_1(double E0, double z)
The function from .
double Bsgamma::Vub_NLO_4body ( double  E0,
bool  CPodd 
)

The 4 body NLO Vub part of the \(BR\) obtained from [92] , \(Vub^{NLO}_{4b}\).

Parameters
[in]E0energy cutoff
[in]CPoddswitch to allow for CPodd terms
Returns
\(Vub^{NLO}_{4b}\)

Definition at line 1113 of file Flavour/src/bsgamma.cpp.

1114 {
1115  if (FOUR_BODY) {
1116  double d = delta(E0);
1117  double d2 = d*d;
1118  double d3 = d2*d;
1119  double Ld = log(d);
1120  double Lumd = log(1. - d);
1121  double Lq = log(Ms/Mb_kin);
1122 
1123  double uphib427 = ( 2. * d * (-63. + 30. * d + 35. * d2 - 2. * d3
1124  + 3. * d * (-18. - 7. * d + d2) * Ld) ) / ( 243. * (d - 1.) );
1125  double uphib428 = ( 108. * (d - 1.) * (d - 1.) * Lumd*Lumd
1126  - 12. * Lumd * (- 25. - 18. * Lq - 18. * d * (5. + 4. * Lq)
1127  + 9. * d2 * (5. + 4. * Lq) + (9. + 36. * d - 18. * d2) * Ld)
1128  + d * (24. * (17. + 9. * Lq) + 27. * d * (43. + 26. * Lq)
1129  - d2 * (127. + 72. * Lq) + 9. * (-12. - 39. * d + 4. * d2) * Ld)
1130  + 108. * (-1. - 4. * d + 2. * d2) * gsl_sf_dilog(d) ) / 729.;
1131 
1132  return 4. * Alstilde * ( ( C2_0 - C1_0/6. ).abs2() *
1133  ( CKMu.real() * 0.005025213076791178 + CPodd * CKMu.imag() * 0.013978889449487913)
1134  + ( C2_0 - C1_0/6. ).real() * CKMu.real() * (C7_0.real() * uphib427 + C8_0.real() * uphib428) );
1135  }
1136 
1137  else return 0.;
1138 }
gslpp::complex C1_0
gslpp::complex CKMu
#define FOUR_BODY
const double & real() const
double delta(double E0)
The cutoff energy function .
gslpp::complex C7_0
gslpp::complex C2_0
gslpp::complex C8_0
const double & imag() const
complex log(const complex &z)
double Bsgamma::zeta ( )

The squared ratio between \(m_c\) and \(m_b^{\rm kin}\), \( z \).

Returns
\( z \)

Definition at line 148 of file Flavour/src/bsgamma.cpp.

149 {
150  return Mc*Mc/Mb_kin/Mb_kin;
151 }

Member Data Documentation

double Bsgamma::ale
private

alpha electromagnetic

Definition at line 1147 of file Flavour/src/bsgamma.h.

gslpp::vector<gslpp::complex>** Bsgamma::allcoeff
private

vector that contains the Wilson coeffients

Definition at line 1174 of file Flavour/src/bsgamma.h.

gslpp::vector<gslpp::complex>** Bsgamma::allcoeffprime
private

vector that contains the primed Wilson coeffients

Definition at line 1175 of file Flavour/src/bsgamma.h.

double Bsgamma::Alstilde
private

alpha strong divided by 4 pi

Definition at line 1149 of file Flavour/src/bsgamma.h.

double Bsgamma::alsUps
private

alpha strong Upsilon

Definition at line 1148 of file Flavour/src/bsgamma.h.

double Bsgamma::avaINT
private

Gsl integral variable

Definition at line 1202 of file Flavour/src/bsgamma.h.

double Bsgamma::BLNPcorr
private

non perturbative correction from [41]

Definition at line 1167 of file Flavour/src/bsgamma.h.

double Bsgamma::BR
private

BR of the decay

Definition at line 1171 of file Flavour/src/bsgamma.h.

double Bsgamma::BR_CPodd
private

BR of the decay

Definition at line 1172 of file Flavour/src/bsgamma.h.

double Bsgamma::BRsl
private

BR of the semileptonic decay \(B \to X_c e \nu\)

Definition at line 1157 of file Flavour/src/bsgamma.h.

double Bsgamma::C
private

The semileptonic phase space ratio

Definition at line 1158 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C1_0
private

LO term of the Wilson coeffients \(C_1\)

Definition at line 1177 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C1_1
private

NLO term of the Wilson coeffients \(C_1\)

Definition at line 1186 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C2_0
private

LO term of the Wilson coeffients \(C_2\)

Definition at line 1178 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C2_1
private

NLO term of the Wilson coeffients \(C_2\)

Definition at line 1187 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C3_0
private

LO term of the Wilson coeffients \(C_3\)

Definition at line 1179 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C3_1
private

NLO term of the Wilson coeffients \(C_3\)

Definition at line 1188 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C4_0
private

LO term of the Wilson coeffients \(C_4\)

Definition at line 1180 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C4_1
private

NLO term of the Wilson coeffients \(C_4\)

Definition at line 1189 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C5_0
private

LO term of the Wilson coeffients \(C_5\)

Definition at line 1181 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C5_1
private

NLO term of the Wilson coeffients \(C_5\)

Definition at line 1190 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C6_0
private

LO term of the Wilson coeffients \(C_6\)

Definition at line 1182 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C6_1
private

NLO term of the Wilson coeffients \(C_6\)

Definition at line 1191 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C7_0
private

LO term of the Wilson coeffients \(C_7\)

Definition at line 1183 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C7_1
private

NLO term of the Wilson coeffients \(C_7\)

Definition at line 1192 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C7_2
private

NNLO term of the Wilson coeffients \(C_7\)

Definition at line 1195 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C7p_0
private

LO term of the Wilson coeffients \(C'_7\)

Definition at line 1197 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C7p_1
private

NLO term of the Wilson coeffients \(C_7\)

Definition at line 1198 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C8_0
private

LO term of the Wilson coeffients \(C_8\)

Definition at line 1184 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::C8_1
private

NLO term of the Wilson coeffients \(C_8\)

Definition at line 1193 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntb1
private

Cache variable

Definition at line 1223 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntb2
private

Cache variable

Definition at line 1224 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntb3
private

Cache variable

Definition at line 1225 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntb4
private

Cache variable

Definition at line 1226 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntbb1
private

Cache variable

Definition at line 1227 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntbb2
private

Cache variable

Definition at line 1228 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntbb4
private

Cache variable

Definition at line 1229 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntbc1
private

Cache variable

Definition at line 1230 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntbc2
private

Cache variable

Definition at line 1231 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntc1
private

Cache variable

Definition at line 1232 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntc1im
private

Cache variable

Definition at line 1233 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntc2
private

Cache variable

Definition at line 1234 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntc3
private

Cache variable

Definition at line 1235 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntcc
private

Cache variable

Definition at line 1236 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntcc1
private

Cache variable

Definition at line 1237 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntcc1p1
private

Cache variable

Definition at line 1238 of file Flavour/src/bsgamma.h.

double Bsgamma::CacheIntPhi772r
private

Cache variable

Definition at line 1239 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::CKMu
private

Vckm factor

Definition at line 1160 of file Flavour/src/bsgamma.h.

double Bsgamma::E0
private

energy cutoff

Definition at line 1150 of file Flavour/src/bsgamma.h.

double Bsgamma::errINT
private

Gsl integral variable

Definition at line 1203 of file Flavour/src/bsgamma.h.

gsl_function Bsgamma::INT
private

Gsl integral variable

Definition at line 1200 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intb1Cached
private

Cache variable

Definition at line 1205 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intb2Cached
private

Cache variable

Definition at line 1206 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intb3Cached
private

Cache variable

Definition at line 1207 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intb4Cached
private

Cache variable

Definition at line 1208 of file Flavour/src/bsgamma.h.

double Bsgamma::Intb_cache
private

Cache variable

Definition at line 1244 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intb_updated
private

Cache variable

Definition at line 1241 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intbb1Cached
private

Cache variable

Definition at line 1209 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intbb2Cached
private

Cache variable

Definition at line 1210 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intbb4Cached
private

Cache variable

Definition at line 1211 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intbc1Cached
private

Cache variable

Definition at line 1212 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intbc2Cached
private

Cache variable

Definition at line 1213 of file Flavour/src/bsgamma.h.

gslpp::vector<double> Bsgamma::Intbc_cache
private

Cache variable

Definition at line 1245 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intbc_updated
private

Cache variable

Definition at line 1242 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intc1Cached
private

Cache variable

Definition at line 1214 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intc1imCached
private

Cache variable

Definition at line 1215 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intc2Cached
private

Cache variable

Definition at line 1216 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intc3Cached
private

Cache variable

Definition at line 1217 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intcc1Cached
private

Cache variable

Definition at line 1219 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::Intcc1p1Cached
private

Cache variable

Definition at line 1220 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::IntccCached
private

Cache variable

Definition at line 1218 of file Flavour/src/bsgamma.h.

unsigned int Bsgamma::IntPhi772rCached
private

Cache variable

Definition at line 1221 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::lambda_t
private

Vckm factor

Definition at line 1159 of file Flavour/src/bsgamma.h.

double Bsgamma::Mb_kin
private

b quark mass in the kinetic scheme

Definition at line 1154 of file Flavour/src/bsgamma.h.

double Bsgamma::Mc
private

c quark mass scale

Definition at line 1155 of file Flavour/src/bsgamma.h.

double Bsgamma::Ms
private

s quark mass scale

Definition at line 1156 of file Flavour/src/bsgamma.h.

double Bsgamma::mu_b
private

b quark mass scale

Definition at line 1151 of file Flavour/src/bsgamma.h.

double Bsgamma::mu_c
private

c quark mass scale

Definition at line 1152 of file Flavour/src/bsgamma.h.

double Bsgamma::mu_G2
private

B meson expectation value of one of the relevant dim. 5 and 6 local operators

Definition at line 1164 of file Flavour/src/bsgamma.h.

double Bsgamma::mu_kin
private

kinetic mass scale

Definition at line 1153 of file Flavour/src/bsgamma.h.

double Bsgamma::mu_pi2
private

B meson expectation value of one of the relevant dim. 5 and 6 local operators

Definition at line 1163 of file Flavour/src/bsgamma.h.

int Bsgamma::obs
private

observable type

Definition at line 1169 of file Flavour/src/bsgamma.h.

double Bsgamma::overall
private

overall BR factor

Definition at line 1162 of file Flavour/src/bsgamma.h.

double Bsgamma::rho_D3
private

B meson expectation value of one of the relevant dim. 5 and 6 local operators

Definition at line 1165 of file Flavour/src/bsgamma.h.

double Bsgamma::rho_LS3
private

B meson expectation value of one of the relevant dim. 5 and 6 local operators

Definition at line 1166 of file Flavour/src/bsgamma.h.

gslpp::complex Bsgamma::V_cb
private

Vckm factor

Definition at line 1161 of file Flavour/src/bsgamma.h.

gsl_integration_cquad_workspace* Bsgamma::w_INT
private

Gsl integral variable

Definition at line 1201 of file Flavour/src/bsgamma.h.


The documentation for this class was generated from the following files: