(Generated on Fri Feb 19 2016 13:25:19 by 1.8.9.1)
gslpp Namespace Reference

Complex number, vector and matrix manipulation using GSL. More...

## Classes

class  complex
A class for defining operations on and functions of complex numbers. More...

class  matrix
A base class for defining operations on matrices, both real and complex. More...

class  matrix< complex >
A class for constructing and defining operations on complex matrices. More...

class  matrix< double >
A class for constructing and defining operations on real matrices. More...

class  vector
A base class for defining operations on vectors, both real and complex. More...

class  vector< complex >
A class for constructing and defining operations on complex vectors. More...

class  vector< double >
A class for constructing and defining operations on real vectors. More...

## Functions

vector< double > operator* (const double &a, vector< double > v)

complex operator* (const double &x1, const complex &z2)

vector< complexoperator* (const complex &z, vector< double > v)

vector< complexoperator* (const complex &z, vector< complex > v)

vector< complexoperator* (const double &a, vector< complex > v)

matrix< double > operator* (const double &a, matrix< double > m)

vector< double > operator* (const vector< double > &v, matrix< double > m)

vector< complexoperator* (const vector< complex > &v, matrix< double > m)

matrix< complexoperator* (const complex &z, matrix< double > m)

matrix< complexoperator* (const complex &z, const matrix< complex > m)

vector< complexoperator* (const vector< complex > &v, const matrix< complex > m)

vector< complexoperator* (const vector< double > &v, const matrix< complex > m)

matrix< complexoperator* (const double &a, const matrix< complex > m)

vector< double > operator+ (const double &a, vector< double > v)

complex operator+ (const double &x1, const complex &z2)

vector< complexoperator+ (const complex &z, vector< double > v)

vector< complexoperator+ (const complex &z, vector< complex > v)

vector< complexoperator+ (const double &a, vector< complex > v)

matrix< double > operator+ (const double &a, matrix< double > m)

matrix< complexoperator+ (const complex &z, matrix< double > m)

matrix< complexoperator+ (const matrix< double > m1, const matrix< complex > m2)

matrix< complexoperator+ (const complex &z, const matrix< complex > m)

matrix< complexoperator+ (const double &a, const matrix< complex > m)

vector< double > operator- (const double &a, vector< double > v)

complex operator- (const double &x1, const complex &z2)

vector< complexoperator- (const complex &z, vector< double > v)

vector< complexoperator- (const complex &z, vector< complex > v)

vector< complexoperator- (const double &a, vector< complex > v)

matrix< double > operator- (const double &a, matrix< double > m)

matrix< complexoperator- (const complex &z, matrix< double > m)

matrix< complexoperator- (const matrix< double > m1, const matrix< complex > m2)

matrix< complexoperator- (const complex &z, const matrix< complex > m)

matrix< complexoperator- (const double &a, const matrix< complex > m)

complex operator/ (const double &x1, const complex &z2)

std::ostream & operator<< (std::ostream &output, const complex &z)

std::ostream & operator<< (std::ostream &output, const vector< double > &v)

std::ostream & operator<< (std::ostream &output, const vector< complex > &v)

std::ostream & operator<< (std::ostream &output, const matrix< double > &m)

std::ostream & operator<< (std::ostream &output, const matrix< complex > &m)

Exponential and logarithms of complex numbers
complex exp (const complex &z)

complex log (const complex &z)

complex log10 (const complex &z)

complex log (const complex &z, const complex &b)

complex dilog (const complex &z)

Powers of complex numbers
complex sqrt (const complex &z)

complex pow (const complex &z1, const complex &z2)

complex pow (const complex &z, const double x)

trigonometric functions on complex numbers
complex sin (const complex &z)

complex cos (const complex &z)

complex tan (const complex &z)

complex sec (const complex &z)

complex csc (const complex &z)

complex cot (const complex &z)

complex arcsin (const complex &z)

complex arccos (const complex &z)

complex arctan (const complex &z)

complex arcsec (const complex &z)

complex arccsc (const complex &z)

complex arccot (const complex &z)

Hyperbolic functions on complex numbers
complex sinh (const complex &z)

complex cosh (const complex &z)

complex tanh (const complex &z)

complex sech (const complex &z)

complex csch (const complex &z)

complex coth (const complex &z)

complex arcsinh (const complex &z)

complex arccosh (const complex &z)

complex arctanh (const complex &z)

complex arcsech (const complex &z)

complex arccsch (const complex &z)

complex arccoth (const complex &z)

## Detailed Description

Complex number, vector and matrix manipulation using GSL.

## Function Documentation

 complex gslpp::arccos ( const complex & z )

Inverse cosine

Parameters
 [in] z Complex number
Returns
$$\arccos z$$

Definition at line 483 of file gslpp_complex.cpp.

484  {
485  return complex(gsl_complex_arccos(z.as_gsl_type()));
486  }
 complex gslpp::arccosh ( const complex & z )

Inverse hyperbolic cosine

Parameters
 [in] z Complex number
Returns
$$\mathrm{acosh} z$$

Definition at line 596 of file gslpp_complex.cpp.

597  {
598  return complex(gsl_complex_arccosh(z.as_gsl_type()));
599  }
 complex gslpp::arccot ( const complex & z )

Inverse cotangent

Parameters
 [in] z Complex number
Returns
$$\mathrm{acot} z$$

Definition at line 519 of file gslpp_complex.cpp.

520  {
521  return complex(gsl_complex_arccot(z.as_gsl_type()));
522  }
 complex gslpp::arccoth ( const complex & z )

Inverse hyperbolic cotangent

Parameters
 [in] z Complex number
Returns
$$\mathrm{acoth}(z)$$

Definition at line 632 of file gslpp_complex.cpp.

633  {
634  return complex(gsl_complex_arccoth(z.as_gsl_type()));
635  }
 complex gslpp::arccsc ( const complex & z )

Inverse cosecant

Parameters
 [in] z Complex number
Returns
$$\mathrm{acsc} z$$

Definition at line 510 of file gslpp_complex.cpp.

511  {
512  return complex(gsl_complex_arccsc(z.as_gsl_type()));
513  }
 complex gslpp::arccsch ( const complex & z )

Inverse hyperbolic cosecant

Parameters
 [in] z Complex number
Returns
$$\mathrm{acsch} z$$

Definition at line 623 of file gslpp_complex.cpp.

624  {
625  return complex(gsl_complex_arccsch(z.as_gsl_type()));
626  }
 complex gslpp::arcsec ( const complex & z )

Inverse secant

Parameters
 [in] z Complex number
Returns
$$\mathrm{asec} z$$

Definition at line 501 of file gslpp_complex.cpp.

502  {
503  return complex(gsl_complex_arcsec(z.as_gsl_type()));
504  }
 complex gslpp::arcsech ( const complex & z )

Inverse hyperbolic secant

Parameters
 [in] z Complex number
Returns
$$\mathrm{asech} z$$

Definition at line 614 of file gslpp_complex.cpp.

615  {
616  return complex(gsl_complex_arcsech(z.as_gsl_type()));
617  }
 complex gslpp::arcsin ( const complex & z )

Inverse sine

Parameters
 [in] z Complex number
Returns
$$\arcsin z$$

Definition at line 474 of file gslpp_complex.cpp.

475  {
476  return complex(gsl_complex_arcsin(z.as_gsl_type()));
477  }
 complex gslpp::arcsinh ( const complex & z )

Inverse hyperbolic sine

Parameters
 [in] z Complex number
Returns
$$\mathrm{asinh} z$$

Definition at line 587 of file gslpp_complex.cpp.

588  {
589  return complex(gsl_complex_arcsinh(z.as_gsl_type()));
590  }
 complex gslpp::arctan ( const complex & z )

Inverse tangent

Parameters
 [in] z Complex number
Returns
$$\arctan z$$

Definition at line 492 of file gslpp_complex.cpp.

493  {
494  return complex(gsl_complex_arctan(z.as_gsl_type()));
495  }
 complex gslpp::arctanh ( const complex & z )

Inverse hyperbolic tangent

Parameters
 [in] z Complex number
Returns
$$\mathrm{atanh} z$$

Definition at line 605 of file gslpp_complex.cpp.

606  {
607  return complex(gsl_complex_arctanh(z.as_gsl_type()));
608  }
 complex gslpp::cos ( const complex & z )

Cosine

Parameters
 [in] z Complex number
Returns
$$\cos z$$

Definition at line 429 of file gslpp_complex.cpp.

430  {
431  return complex(gsl_complex_cos(z.as_gsl_type()));
432  }
 complex gslpp::cosh ( const complex & z )

Hyperbolic cosine

Parameters
 [in] z Complex number
Returns
$$\cosh z$$

Definition at line 542 of file gslpp_complex.cpp.

543  {
544  return complex(gsl_complex_cosh(z.as_gsl_type()));
545  }
 complex gslpp::cot ( const complex & z )

Cotangent

Parameters
 [in] z Complex number
Returns
$$\cot z$$

Definition at line 465 of file gslpp_complex.cpp.

466  {
467  return complex(gsl_complex_cot(z.as_gsl_type()));
468  }
 complex gslpp::coth ( const complex & z )

Hyperbolic cotangent

Parameters
 [in] z Complex number
Returns
$$\coth z$$

Definition at line 578 of file gslpp_complex.cpp.

579  {
580  return complex(gsl_complex_coth(z.as_gsl_type()));
581  }
 complex gslpp::csc ( const complex & z )

Cosecant

Parameters
 [in] z Complex number
Returns
$$\csc z$$

Definition at line 456 of file gslpp_complex.cpp.

457  {
458  return complex(gsl_complex_csc(z.as_gsl_type()));
459  }
 complex gslpp::csch ( const complex & z )

Hyperbolic cosecant

Parameters
 [in] z Complex number
Returns
$$\mathrm{csch} z$$

Definition at line 569 of file gslpp_complex.cpp.

570  {
571  return complex(gsl_complex_csch(z.as_gsl_type()));
572  }
 complex gslpp::dilog ( const complex & z )

DiLogarithm of a complex number

Parameters
 [in] z Complex number
Returns
$$Li_2(z)$$

Definition at line 370 of file gslpp_complex.cpp.

371  {
372  gsl_sf_result re, im;
373  gsl_sf_complex_dilog_xy_e(z.real(), z.imag(), &re, &im);
374  return complex(re.val, im.val, false);
375  }
 complex gslpp::exp ( const complex & z )

exponentioal of a complex number

Parameters
 [in] z Complex number
Returns
$$e^z$$

Definition at line 333 of file gslpp_complex.cpp.

334  {
335  return complex(gsl_complex_exp(z.as_gsl_type()));
336  }
 complex gslpp::log ( const complex & z )

Logarithm of a complex number (base e)

Parameters
 [in] z Complex number
Returns
$$\log z$$

Definition at line 342 of file gslpp_complex.cpp.

343  {
344  return complex(gsl_complex_log(z.as_gsl_type()));
345  }
 complex gslpp::log ( const complex & z, const complex & b )

Logarithm of a complex number (base b)

Parameters
 [in] z Complex number [in] b Complex number
Returns
$$\log_b z$$

Definition at line 361 of file gslpp_complex.cpp.

363  {
364  return complex(gsl_complex_log_b(z.as_gsl_type(),b.as_gsl_type()));
365  }
 complex gslpp::log10 ( const complex & z )

Logarithm of a complex number (base 10)

Parameters
 [in] z Complex number
Returns
$$\log_{10} z$$

Definition at line 351 of file gslpp_complex.cpp.

352  {
353  return complex(gsl_complex_log10(z.as_gsl_type()));
354  }
 vector gslpp::operator* ( const double & a, vector< double > v )

Multiply a real number by real vector

Parameters
 a Real number v Real vector
Returns
$$a*v$$

Definition at line 300 of file gslpp_vector_double.cpp.

301  {
302  return v*a;
303  }
 complex gslpp::operator* ( const double & x1, const complex & z2 )

Multiply a real and complex numbers

Parameters
 [in] x1 Real number [in] z2 Complex number
Returns
$$x_1 z_2$$

Definition at line 314 of file gslpp_complex.cpp.

315  {
316  complex z1(x1, 0.);
317  return z1 * z2;
318  }
 vector gslpp::operator* ( const complex & z, vector< double > v )

Multiply a complex number by a real vector

Parameters
 z Complex number v Real vector
Returns
$$z*v$$

Definition at line 315 of file gslpp_vector_double.cpp.

316  {
317  return v*z;
318  }
 vector gslpp::operator* ( const complex & z, vector< complex > v )

Multiply a complex number by complex vector

Parameters
 z Complex number v Complex vector
Returns
$$z*v$$

Definition at line 394 of file gslpp_vector_complex.cpp.

395  {
396  return v*z;
397  }
 vector gslpp::operator* ( const double & a, vector< complex > v )

Multiply a real number by a complex vector

Parameters
 a Real number v Complex vector
Returns
$$z*v$$

Definition at line 409 of file gslpp_vector_complex.cpp.

410  {
411  return v*a;
412  }
 matrix gslpp::operator* ( const double & a, matrix< double > m )

Multiply a real number by real matrix

Parameters
 a Real number m Real matrix
Returns
$$a*m$$

Definition at line 485 of file gslpp_matrix_double.cpp.

486  {
487  return m*a;
488  }
 vector gslpp::operator* ( const vector< double > & v, matrix< double > m )

Multiply a real vector by a real matrix

Parameters
 v Real vector m Real matrix
Returns
$$v*m$$

Definition at line 490 of file gslpp_matrix_double.cpp.

491  {
492  return m.transpose() * v;
493  }
 vector gslpp::operator* ( const vector< complex > & v, matrix< double > m )

Multiply a complex vector by a real matrix

Parameters
 v Complex vector m Real matrix
Returns
$$v*m$$

Definition at line 495 of file gslpp_matrix_double.cpp.

496  {
497  return m.transpose() * v;
498  }
 matrix gslpp::operator* ( const complex & z, matrix< double > m )

Multiply a complex number by a real matrix

Parameters
 z Complex number m Real matrix
Returns
$$a*m$$

Definition at line 510 of file gslpp_matrix_double.cpp.

511  {
512  return m*z;
513  }
 matrix gslpp::operator* ( const complex & z, const matrix< complex > m )

Multiply a complex number by complex matrix

Parameters
 z Complex number m Complex matrix
Returns
$$z*m$$

Definition at line 656 of file gslpp_matrix_complex.cpp.

657  {
658  return m * z;
659  }
 vector gslpp::operator* ( const vector< complex > & v, const matrix< complex > m )

Multiply a complex vector by a complex matrix

Parameters
 v Complex vector m Complex matrix
Returns
$$v*m$$

Definition at line 661 of file gslpp_matrix_complex.cpp.

662  {
663  return m.transpose() * v;
664  }
 vector gslpp::operator* ( const vector< double > & v, const matrix< complex > m )

Multiply a real vector by a complex matrix

Parameters
 v Real vector m Complex matrix
Returns
$$v*m$$

Definition at line 666 of file gslpp_matrix_complex.cpp.

667  {
668  return m.transpose() * v;
669  }
 matrix gslpp::operator* ( const double & a, const matrix< complex > m )

Multiply a real number by a complex matrix

Parameters
 a Real number m Complex matrix
Returns
$$z*m$$

Definition at line 681 of file gslpp_matrix_complex.cpp.

682  {
683  return m * a;
684  }
 vector gslpp::operator+ ( const double & a, vector< double > v )

Add a real number to a real vector

Parameters
 a Real number v Real vector
Returns
$$a + v$$

Definition at line 290 of file gslpp_vector_double.cpp.

291  {
292  return v+a;
293  }
 complex gslpp::operator+ ( const double & x1, const complex & z2 )

Add a real and complex numbers

Parameters
 [in] x1 Real number [in] z2 Complex number
Returns
$$x_1 + z_2$$

Definition at line 302 of file gslpp_complex.cpp.

303  {
304  complex z1(x1, 0.);
305  return z1 + z2;
306  }
 vector gslpp::operator+ ( const complex & z, vector< double > v )

Add a complex number to a real vector

Parameters
 z Complex number v Real vector
Returns
$$z + v$$

Definition at line 305 of file gslpp_vector_double.cpp.

306  {
307  return v+z;
308  }
 vector gslpp::operator+ ( const complex & z, vector< complex > v )

Add a complex number to a complex vector

Parameters
 z Complex number v Complex vector
Returns
$$z + v$$

Definition at line 384 of file gslpp_vector_complex.cpp.

385  {
386  return v + z;
387  }
 vector gslpp::operator+ ( const double & a, vector< complex > v )

Add a real number to a complex vector

Parameters
 a Real number v Complex vector
Returns
$$a + v$$

Definition at line 399 of file gslpp_vector_complex.cpp.

400  {
401  return v + a;
402  }
 matrix gslpp::operator+ ( const double & a, matrix< double > m )

Add a real number to a real vector

Parameters
 a Real number m Real vector
Returns
$$a + m$$

Definition at line 475 of file gslpp_matrix_double.cpp.

476  {
477  return m+a;
478  }
 matrix gslpp::operator+ ( const complex & z, matrix< double > m )

Add a complex number to a real matrix

Parameters
 z Complex number m Real matrix
Returns
$$z + m$$

Definition at line 500 of file gslpp_matrix_double.cpp.

501  {
502  return m+z;
503  }
 matrix gslpp::operator+ ( const matrix< double > m1, const matrix< complex > m2 )

Add a double matrix to a complex matrix

Parameters
 m1 Double matrix m2 Complex matrix
Returns
$$m2 + m1$$

Definition at line 638 of file gslpp_matrix_complex.cpp.

638  {
639  return m2 + m1;
640  }
 matrix gslpp::operator+ ( const complex & z, const matrix< complex > m )

Add a complex number to a complex matrix

Parameters
 z Complex number m Complex matrix
Returns
$$z + m$$

Definition at line 646 of file gslpp_matrix_complex.cpp.

647  {
648  return m + z;
649  }
 matrix gslpp::operator+ ( const double & a, const matrix< complex > m )

Add a real number to a complex matrix

Parameters
 a Real number m Complex matrix
Returns
$$a + m$$

Definition at line 671 of file gslpp_matrix_complex.cpp.

672  {
673  return m + a;
674  }
 vector gslpp::operator- ( const double & a, vector< double > v )

Subtract a real number from a real vector

Parameters
 a Real number v Real vector
Returns
$$a - v$$

Definition at line 295 of file gslpp_vector_double.cpp.

296  {
297  return -v+a;
298  }
 complex gslpp::operator- ( const double & x1, const complex & z2 )

Subtract a real and complex numbers

Parameters
 [in] x1 Real number [in] z2 Complex number
Returns
$$x_1 - z_2$$

Definition at line 308 of file gslpp_complex.cpp.

309  {
310  complex z1(x1, 0.);
311  return z1 - z2;
312  }
 vector gslpp::operator- ( const complex & z, vector< double > v )

Subtract a complex number from a real vector

Parameters
 z Complex number v Real vector
Returns
$$z - v$$

Definition at line 310 of file gslpp_vector_double.cpp.

311  {
312  return -v+z;
313  }
 vector gslpp::operator- ( const complex & z, vector< complex > v )

Subtract a complex number from a complex vector

Parameters
 z Complex number v Complex vector
Returns
$$z - v$$

Definition at line 389 of file gslpp_vector_complex.cpp.

390  {
391  return -v + z;
392  }
 vector gslpp::operator- ( const double & a, vector< complex > v )

Subtract a complex vector from a real number

Parameters
 a Real number v Complex vector
Returns
$$a - v$$

Definition at line 404 of file gslpp_vector_complex.cpp.

405  {
406  return -v + a;
407  }
 matrix gslpp::operator- ( const double & a, matrix< double > m )

Subtract a real number from a real matrix

Parameters
 a Real number m Real matrix
Returns
$$a - m$$

Definition at line 480 of file gslpp_matrix_double.cpp.

481  {
482  return -m+a;
483  }
 matrix gslpp::operator- ( const complex & z, matrix< double > m )

Subtract a complex number from a real matrix

Parameters
 z Complex number m Real matrix
Returns
$$z - m$$

Definition at line 505 of file gslpp_matrix_double.cpp.

506  {
507  return -m+z;
508  }
 matrix gslpp::operator- ( const matrix< double > m1, const matrix< complex > m2 )

Subtract a double matrix to a complex matrix

Parameters
 m1 Double matrix m2 Complex matrix
Returns
$$-m2 + m1$$

Definition at line 642 of file gslpp_matrix_complex.cpp.

642  {
643  return -m2 + m1;
644  }
 matrix gslpp::operator- ( const complex & z, const matrix< complex > m )

Subtract a complex number from a complex matrix

Parameters
 z Complex number m Complex matrix
Returns
$$z - m$$

Definition at line 651 of file gslpp_matrix_complex.cpp.

652  {
653  return -m + z;
654  }
 matrix gslpp::operator- ( const double & a, const matrix< complex > m )

Subtract a complex matrix from a real number

Parameters
 a Real number m Complex matrix
Returns
$$a - m$$

Definition at line 676 of file gslpp_matrix_complex.cpp.

677  {
678  return -m + a;
679  }
 complex gslpp::operator/ ( const double & x1, const complex & z2 )

Divide a real and complex numbers

Parameters
 [in] x1 Real number [in] z2 Complex number
Returns
$$x_1 / z_2$$

Definition at line 320 of file gslpp_complex.cpp.

321  {
322  complex z1(x1, 0);
323  return z1 / z2;
324  }
 std::ostream& gslpp::operator<< ( std::ostream & output, const complex & z )

Friend functions

Parameters
 [in] output output stream [in] z Complex number
Returns
formatted output for complex

Definition at line 143 of file gslpp_complex.cpp.

144  {
145  double absim = ::fabs(z.imag());
146  output << "(" << z.real() << (z.imag() < 0.? "-" : "+");
147  if (absim != 1.)
148  output << fabs(z.imag()) << "*";
149  output << "i)";
150  return output;
151  }
 std::ostream& gslpp::operator<< ( std::ostream & output, const vector< double > & v )

friend functions

Definition at line 280 of file gslpp_vector_double.cpp.

281  {
282  size_t i;
283  output << "(";
284  for (i=0; i<v.size()-1; i++)
285  output << v(i) << ",";
286  output << v(i) << ")";
287  return output;
288  }
 std::ostream& gslpp::operator<< ( std::ostream & output, const vector< complex > & v )

friend functions

Definition at line 374 of file gslpp_vector_complex.cpp.

375  {
376  size_t i;
377  output << "(";
378  for (i = 0; i < v.size() - 1; i++)
379  output << v(i) << ",";
380  output << v(i) << ")";
381  return output;
382  }
 std::ostream& gslpp::operator<< ( std::ostream & output, const matrix< double > & m )

friend functions

Definition at line 461 of file gslpp_matrix_double.cpp.

462  {
463  size_t i,j;
464  for (i=0; i<m.size_i(); i++)
465  {
466  output << std::endl;
467  output << "\t(";
468  for (j=0; j<m.size_j()-1; j++)
469  output << m(i,j) << ",";
470  output << m(i,j) << ")";
471  }
472  return output;
473  }
 std::ostream& gslpp::operator<< ( std::ostream & output, const matrix< complex > & m )

friend functions

Definition at line 624 of file gslpp_matrix_complex.cpp.

625  {
626  size_t i,j;
627  for (i=0; i<m.size_i(); i++)
628  {
629  output << std::endl;
630  output << "\t(";
631  for (j=0; j<m.size_j()-1; j++)
632  output << m(i,j) << ",";
633  output << m(i,j) << ")";
634  }
635  return output;
636  }
 complex gslpp::pow ( const complex & z1, const complex & z2 )

Complex number to the z2 complex order

Parameters
 [in] z1 Complex number [in] z2 Complex number
Returns
$$z_1^{z_2}$$

Definition at line 395 of file gslpp_complex.cpp.

397  {
398  return complex(gsl_complex_pow(z1.as_gsl_type(),
399  z2.as_gsl_type()));
400  }
 complex gslpp::pow ( const complex & z, const double x )

Complex number to the x real order

Parameters
 [in] z Complex number [in] x Real number
Returns
$$z^x$$

Definition at line 407 of file gslpp_complex.cpp.

408  {
409  return complex(gsl_complex_pow_real(z.as_gsl_type(), x));
410  }
 complex gslpp::sec ( const complex & z )

Secant

Parameters
 [in] z Complex number
Returns
$$\sec z$$

Definition at line 447 of file gslpp_complex.cpp.

448  {
449  return complex(gsl_complex_sec(z.as_gsl_type()));
450  }
 complex gslpp::sech ( const complex & z )

Hyperbolic secant

Parameters
 [in] z Complex number
Returns
$$\mathrm{sech} z$$

Definition at line 560 of file gslpp_complex.cpp.

561  {
562  return complex(gsl_complex_sech(z.as_gsl_type()));
563  }
 complex gslpp::sin ( const complex & z )

Sine

Parameters
 [in] z Complex number
Returns
$$\sin z$$

Definition at line 420 of file gslpp_complex.cpp.

421  {
422  return complex(gsl_complex_sin(z.as_gsl_type()));
423  }
 complex gslpp::sinh ( const complex & z )

Hyperbolic sine

Parameters
 [in] z Complex number
Returns
$$\sinh z$$

Definition at line 533 of file gslpp_complex.cpp.

534  {
535  return complex(gsl_complex_sinh(z.as_gsl_type()));
536  }
 complex gslpp::sqrt ( const complex & z )

Square root of a complex number

Parameters
 [in] z Complex number
Returns
$$\sqrt z$$

Definition at line 385 of file gslpp_complex.cpp.

386  {
387  return complex(gsl_complex_sqrt(z.as_gsl_type()));
388  }
 complex gslpp::tan ( const complex & z )

Tangent

Parameters
 [in] z Complex number
Returns
$$\tan z$$

Definition at line 438 of file gslpp_complex.cpp.

439  {
440  return complex(gsl_complex_tan(z.as_gsl_type()));
441  }
 complex gslpp::tanh ( const complex & z )

Hyperbolic tangent

Parameters
 [in] z Complex number
Returns
$$\tanh z$$

Definition at line 551 of file gslpp_complex.cpp.

552  {
553  return complex(gsl_complex_tanh(z.as_gsl_type()));
554  }